
Challenges and opportunities in food engineering: Modeling,
virtualization, open innovation and social responsibility q

I. Sam Saguy
The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel

a r t i c l e i n f o

Article history:
Received 12 February 2015
Received in revised form 22 May 2015
Accepted 12 July 2015
Available online xxxx

Keywords:
Virtualization
Open innovation
Four-helix
Enginomics
Social responsibility
Startup university

a b s t r a c t

Food engineering should shed its historical mindset, embrace new challenges and opportunities that the
21st century holds. Unabated scientific progress and breakthroughs highlight mounting challenges with
some vital paradigm shifts. Four main challenges have been identified: modeling, virtualization, open
innovation (OI) and social responsibility (SR). The shift from empirical to physics-based food modeling
is paramount to benefit from new sensor technology, proliferation of the ‘Internet of Things’, and
big-data information. An overriding part of modeling continues to be food uniqueness and complexity,
consumer needs and expectations, health and wellness, sustainability and SR. Virtualization is to signif-
icantly benefit from expanding computational power, dedicated software, cloud computing, big data, and
other breakthroughs. Collaboration and partnerships with all innovation ecosystem stakeholders are
paramount. Academia’s role as a ‘startup university’ requires revising its intellectual property models,
curricula rejuvenating, OI, creativity, employability and SR. Food engineers are at a verge of a very pros-
perous future.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Today, food engineering faces numerous challenges while offer-
ing many opportunities for its practitioners. This article is based on
a plenary session held during the conference ‘‘Virtualization of
Processes in Food Engineering’’ at the University of Salerno, Italy
(1–3 Oct 2014) and presents the author’s views on four main
topics: modeling, virtualization, Enginomics, OI, SR, as well as on
the future of food engineering. These topics and the accompanying
challenges and opportunities will play an important part in creat-
ing the paradigm shifts required to reshape the food engineering
domain.

2. Modeling

A model is an analog of a physical reality, albeit typically more
simple and idealized. Models can be physical or mathematical and
are created with the goal of gaining insight into reality more con-
veniently (Datta and Sablani, 2007). An observation made more
than three decades ago, which still applies today, stipulated that

devising a formal scheme to produce a general kinetic/mathemat-
ical model is beyond our knowledge. It outlined the following gen-
eral steps for structuring a model (Saguy and Karel, 1980): (i)
defining the problem; (ii) applying the theory that governs the
phenomenon; (iii) expressing that theory in mathematical terms;
(iv) writing a suitable computation algorithm; (v) verifying the
model by comparing its results with actual experimental data. It
is worth noting that fitting a model with no theoretical basis is
merely data fitting, and should not be confused with a
physics-based approach. Modeling verification is the last step; it
is an essential and cardinal part of the modeling process and
should not be circumvented. Moreover, the verification step should
use a different dataset than that used to construct the model itself.
These observations are trivial, but nevertheless bear mentioning.

Despite a very large number of scientific publications on mod-
eling, their applicability to food products and processes is far from
straightforward (Bimbenet et al., 2007). Food modeling remains a
complicated task due mainly to a lack of knowledge concerning
its mechanisms, the difficulty involved in experimentation and
obtaining reliable data, and the natural variability and uncertain-
ties surrounding most food properties. For a long time, food pro-
cessing was mostly dedicated to product safety, stabilization and
operation scale up in the industry. Process engineers applied con-
cepts from chemical engineering and focused on time–tempera-
ture diagrams to predict and limit residual spores or
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microorganisms in foods (Datta and Sablani, 2007; Trystram,
2012). A new modeling paradigm known as multiscale modeling
might alleviate some of these difficulties. Multiscale models are
essentially a hierarchy of interconnected submodels that describe
a material’s behavior on different spatial scales (Ho et al., 2013).

Another topic that needs additional consideration is data avail-
ability, reliability and accuracy. In many cases, food engineers lack
accurate data for their systems, and consequently use previously
reported data with little control of the system used, and/or fit
the wrong type of model. A good example is the utilization of
Fick law claiming that diffusion is Fickian, and that the diffusion
coefficient is a function of concentration. With new tools, methods,
monitoring devices, accurate and adequate data collection is
becoming feasible. Thus, one should expect to see more benefits
of modeling, and even more of multiphysics that would furnish
the possibility to test different types of data and deriving the
sensitive parameters.

Modeling of foods and food processing are expected to undergo
a significant shift due to the widespread proliferation of comput-
ers, lower cost, availability of dedicated and sophisticated software
(e.g., Comsol, http://www.comsol.com/products), and the enor-
mous potential of big data, microprocessing, sensing devices and
connectivity (Saguy et al., 2013). Emerging technologies are
already available for the development of a new generation of intel-
ligent sensors for real-time detection and monitoring of changes in
a product or process. However, the major shift will occur when
experimental or ‘‘observation-based’’ models, where the starting
point is the experimental dataset from which the model was built,
undergo a significant modification toward physics-based and/or
mechanistic models. The latter is based on the universal physical
laws that describe the presumed physical phenomena (Datta and
Sablani, 2007; Trystram, 2012).

The physics-based approach (also known as deductive, mecha-
nistic, first-principle-based, or ‘white box’) stems from models of
transport phenomena coupled with models describing the physic-
ochemical changes in the product as a function of operating vari-
ables (Broyart and Trystram, 2003; Purlis, 2014). The empirical
modeling approach (also known as ‘black box’) ignores the reac-
tions and mechanisms occurring during the process, while aiming
to find a relationship between inputs (operating process condi-
tions, product characteristics) and outputs (final quality attributes)
using an experimental dataset and mathematical and statistical
tools, and linear and/or nonlinear techniques, response surface
methodology (RSM), artificial neural networks, etc. A combined
model may also be applied (Broyart and Trystram, 2003; Purlis,
2014). While the black-box approach seeks simplified relationships
to correlate an output variable with one or more input variables, it
ignores and/or circumvents the process’s physical and thermody-
namic mechanisms, as well as chemical and biochemical reactions.
The opposite approach, termed ‘white box’, takes into considera-
tion the physical changes and other reactions occurring during
the process.

Physics-based modeling can be extended by using
multi-physics, which involves multiple physical models or multi-
ple simultaneous physical phenomena (e.g., drying, microwaving),
and the solving of coupled systems of partial differential equations.
This approach holds the potential for generality as no empirical
correlations are used at the interfaces. Multi-physics mathematical
modeling can drive innovation in very specific applications, and
several food applications are already available (e.g., mild drying,
devoted to the processing of high-added-value food products,
microwaving; Marra, 2012; Marra et al., 2010).

To highlight some of the issues related to empirical modeling,
here are two typical examples that are quite frequently used and
yet should be considered carefully, if not scrutinized or challenged.
They are the Arrhenius model and RSM.

� The Arrhenius equation has been widely used as a model of
temperature’s effect on the rates of chemical reactions and bio-
logical processes in foods (e.g., Clemente et al., 2014; Labuza,
1984; Saguy et al., 2005; van Boekel, 2009). However, the appli-
cability and usefulness of the Arrhenius equation to chemical
reactions and biological processes in foods, especially solids,
and the relevance of the statistical–mechanical assumptions
on which it is based can be challenged on several grounds
(Peleg et al., 2012). Furthermore, most, if not all reported rates
vs. temperatures traditionally described by the Arrhenius equa-
tion can also be described by a simpler exponential model
(Peleg et al., 2015, 2014), without sacrificing the fit as judged
by statistical criteria. As in the Arrhenius equation, in the expo-
nential model the rate constant is chosen at selected reference
temperature. In contrast, however, both temperatures are in
degrees Celsius (not Kelvin), and the exponential constant is
expressed in degrees Celsius reciprocal. The use of the exponen-
tial model eliminates the need to reverse the temperature axis
direction and compress its scale. It is important to note that
the use of the exponential model also makes it unnecessary to
assume that the degradation’s energy of activation, is univer-
sally temperature-independent, an assumption rarely if ever
supported by experimental evidence (Peleg et al., 2015).
Worth noting however, that the Arrhenius equation (or model)
can be still be used interchangeably, but one should be aware of
its several limitations.
� The second example focuses on RSM. This is a statistical tech-

nique that uses regression analysis to develop a relationship
between the input and output parameters by treating it as an
optimization problem (Datta and Sablani, 2007). Although mod-
eling using RSM is very effective and useful for formula opti-
mization in new product development, and in improving
processing conditions to obtain a certain objective function
and/or quality, it provides no insight into the underlying mech-
anisms and it is merely an experimental relationship that can be
very far from, and in some cases even unrelated to the
physics-based model that describes the various phenomena
and/or processes. Moreover, changes in formulation and/or
the conditions under which the RSM was derived are not possi-
ble. It has been previously indicated that physics-based model-
ing can be an important tool for food product, process, and
equipment designers by reducing the amount of experimenta-
tion and providing a level of insight that is often not achievable
experimentally (Datta, 2008). Hence, RSM should probably be
restricted to a handful of practical and limited cases.

The above two typical examples highlight the need for a para-
digm shift toward enhancing the utilization of physics-based mod-
eling and simultaneously limiting, as much as possible, the
application of empirical models. However, it is quite true that
empirical models may be the only feasible and practical approach
to coping with food system and process complexity, nonlinearity
and natural variability. Cost may be another factor (Pantelides
and Renfro, 2013) in the use of empirical modeling. As this issue
is of the utmost importance to almost all industrial applications,
it highlights the paramount prerequisite for careful consideration.

Utilizing an empirical-based model that is tailor-made for a
unique process and industrial applications can deliver some of
the benefits of a physics-based approach in a more cost-effective,
reliable and sustainable manner. For example, applications for
optimization using much simpler models, combined with coordi-
nation of linear multivariable controllers, have been found to be
less costly to implement while still delivering a significant propor-
tion of the benefits (Pantelides and Renfro, 2013). Nevertheless,
striving for the better characterization, understanding and insights
gained from physics-based modeling is one of the challenges in
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