Accepted Manuscript

Deacidification of Crude Palm Oil using PVA-crosslinked PVDF Membrane

R.A. Azmi, P.S. Goh, A.F. Ismail, W.J. Lau, N.H. Othman, A.M. Noor, M.S.A. Yusoff

PII: S0260-8774(15)00255-1

DOI: http://dx.doi.org/10.1016/j.jfoodeng.2015.06.001

Reference: JFOE 8195

To appear in: Journal of Food Engineering

Received Date: 5 November 2014
Revised Date: 8 April 2015
Accepted Date: 1 June 2015

Please cite this article as: Azmi, R.A., Goh, P.S., Ismail, A.F., Lau, W.J., Othman, N.H., Noor, A.M., Yusoff, M.S.A., Deacidification of Crude Palm Oil using PVA-crosslinked PVDF Membrane, *Journal of Food Engineering* (2015), doi: http://dx.doi.org/10.1016/j.jfoodeng.2015.06.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Deacidification of Crude Palm Oil using PVA-crosslinked PVDF Membrane

R.A. Azmi ^a, P. S. Goh ^{a,*}, A.F. Ismail ^a, W.J. Lau ^a, N.H. Othman ^{a,b}, A.M Noor ^b, M.S.A.

Yusoff ^b

^aAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim, Malaysia

^bSime Darby R&D Centre Downstream, Lot 2664, Jalan Pulau Carey, 42960 Pulau Carey, Selangor, Malaysia

*Corresponding author: peisean@petroleum.utm.my, Tel: +607-5535907, Fax: +607-5535925

Abstract

Over recent years, there has been an explosive growth of interest in the development of alternative approaches for crude palm oil (CPO) refining. During a typical refinery process, free fatty acid (FFA) is one of the key objectionable impurities that need to be reduced if not completely removed from CPO in order to minimize their detrimental effects on the oil quality. Polyvinylidene fluoride (PVDF) membrane shows great potential in removing FFA from CPO owing to its hydrophobic properties, high mechanical strength and good thermal stability. However, low concentration of FFA in CPO, which is normally ranging from 3 to 5%, has hindered the capability of the membranes to separate the trace amount of FFA from the bulk. Thus, modification of PVDF membrane is essential to enhance the interaction between the

Download English Version:

https://daneshyari.com/en/article/6665170

Download Persian Version:

https://daneshyari.com/article/6665170

<u>Daneshyari.com</u>