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a b s t r a c t

The total counts of Enterobacteriaceae and Pseudomonas spp. (EPC) appeared on edible salmon flesh were
determined by using near-infrared (NIR) (900–1700 nm) hyperspectral imaging. Three-dimensional
hyperspectral images (x,y,k) of salmon samples were acquired at different storage time. Spectra (k)
extracted in reflectance (R) unit and two other transformed spectra units, absorbance (A) and Kubelka–
Munck (KM), were prepared to relate to the measured EPC data by using partial least square (PLS)
regression. Based on the three spectra parameters, three full wavelength PLS models defined as FR-PLS,
FA-PLS and FKM-PLS were developed with all correlation coefficients of prediction (RP) over 0.900. To
simplify these models, wavelengths holding the most important information were selected by executing
competitive adaptive reweighted sampling (CARS) algorithm. Better performance was found in the
resulting simplified R-PLS model (defined as FRS-PLS model) which was established with only nine
important wavelengths (931, 1138, 1175, 1242, 1359, 1628, 1641, 1652 and 1655 nm) selected from R
spectra. The absolute difference between root mean square errors of calibration (RMSEC) and prediction
(RMSEP) in the FRS-PLS model was 0.063, less than half (44%) of that of the original FR-PLS model. By
applying the FRS-PLS model to the 2-D images (x,y), EPC distribution maps were generated to visualize
the spatial variation of EPC and the adaptability of the FRS-PLS model for EPC evaluation was further
demonstrated with these distribution maps in which different colors indicated different degrees of EPC
contamination. To sum up, NIR hyperspectral imaging technology shows a great potential to predict
the EPC contamination in salmon flesh. In view of the results obtained from this study, a multi-spectral
imaging system could be developed and further refined for online detection applications in fish industry.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Salmon products are highly perishable, and efforts should be
made to ensure their quality and safety, for example, common tech-
niques used in the agri-food industry such as drying (Sun, 1999; Sun
and Byrne, 1998; Delgado and Sun, 2002; Sun and Woods, 1997),
cooling (Wang and Sun, 2001), freezing (Delgado et al., 2009) and
edible coating (Xu et al., 2001) can be used to preserve their quality.
However, unpleasant microbial contamination can still happen in
salmon products, many of these types of contamination are the
results of growth and reproduction of some harmful spoilage
microorganisms. Enterobacteriaceae and Pseudomonas spp. as two
main aerobic Gram-negative microorganisms are considered
responsible for the microbial spoilage of salmon flesh (Diaz et al.,

2011; Mace et al., 2012; Pettersen et al., 2011). With the increasing
contamination caused by the two specific microorganisms, the
sensory properties of fish flesh such as appearance, colour, odour,
flavour and taste deteriorate gradually (Dondero et al., 2004;
Fagan et al., 2003; Hansen et al., 1996; Joffraud et al., 2001). Many
methods are currently available to detect the spoilage bacteria loads
such as standard colony-counting method (Álvarez et al., 2012;
Botsoglou et al., 2010), molecular biological technique such as poly-
merase chain reaction (PCR) (Doulgeraki and Nychas, 2012; Liu et al.,
2013), immunological technique such as enzyme-linked immuno-
sorbent assay (ELISA) (Dwivedi and Jaykus, 2011; Kitaguchi et al.,
2005) and molecular biology combined with immunological
techniques such as PCR-ELISA (Kuo et al., 2010), however, they are
still time-consuming, destructive, labour-intensive and inefficient,
which cannot meet the requirements of rapid, non-destructive and
real-time detection. Although real-time PCR and redox potential
measurement have been developed to toward high-speed detection,
sample preparation still require longer time (Biassoni and Raso,
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2014; Reichart et al., 2007). On the other hand, development of
novel technologies for online real-time microbial detection is
necessary and attracting increased attentions by food researchers
and producers.

Optical techniques have been introduced as one option for fast
and non-invasive applications in food quality evaluation. Among
the various optical methods, near-infrared (NIR) spectroscopy has
been investigated and its ability of assessing food quality in terms
of physical (Ribeiro et al., 2011), chemical (Balabin and Smirnov,
2011) and microbial indices (Alexandrakis et al., 2012) has been
demonstrated. In the application of NIR spectroscopy, the detailed
spectral information related with tested quality parameters are pro-
vided and used to build suitable models to predict the parameters.
In spite of this, quality distribution with visual observation still
cannot be achieved and that is however very helpful in exhibiting
the concentration of these parameters in food products. Although
imaging or computer vision (Valous et al., 2009; Costa et al., 2011;
Jackman et al., 2008; Sun, 2004) provides spatial information to
visualize the distribution of quality parameters, spectral informa-
tion cannot be achieved and that is critical to quantitatively analyze
the food products.

Hyperspectral imaging as another optical technique has
emerged to extend the spectroscopy or imaging technology.
Hyperspectral imaging for product analysis is based on the acquired
hyperspectral image, which is a three-dimensional (3-D)
‘‘datacube’’ (x,y,k) consisted of a series of 2-D spatial images (x,y)
at each individual wavelength (k) (Wu and Sun, 2013a). The 3-D
‘‘datacube’’ contains a large amount of useful information in which
spectral information is used for modelling and spatial information is
used for visualisation. With the combination of modelling and imag-
ing functions, a product will be characterized more objectively and
reliably. By assembling traditional spectroscopy and computer
vision techniques, hyperspectral imaging has been applied as a
quick, contactless and reagentless tool in many kinds of products
such as fruits and vegetables (Lorente et al., 2012; Wei et al.,
2013), meats (Wu et al., 2012c; Kamruzzaman et al., 2011, 2012;
ElMasry et al., 2011a, 2011b, 2012), poultry (Feng and Sun, 2013),
pharmaceutics (Gendrin et al., 2007), seafood (He et al., 2013b),
cereals (Serranti et al., 2013; Shahin et al., 2013), eggs
(Abdel-Nour and Ngadi, 2011) and milk (Qin et al., 2012).

As for salmon fish, representing finfish group, quality evaluation
using hyperspectral imaging mainly focuses on the physicochemi-
cal attributes such as colour (Wu et al., 2012b), fat (Segtnan et al.,
2009) pH (He et al., 2014c) and moisture (He et al., 2013a; Zhu
et al., 2014). Recently, we presented hyperspectral imaging for
prediction of lactic acid bacteria (LAB) growth in salmon fillets
with a good performance (He et al., 2014a). To promote the need
for further evaluation and control of microbial contamination in
salmon industry, this study was conducted to investigate the
potential of NIR hyperspectral imaging for determination of EPC
presented in edible salmon flesh during the cold storage. The
specific objectives of the study were to:

(1) identify the regions of interest (ROIs) of images and isolate
the ROIs from the background;

(2) extract the spectral data from the ROIs and transform the
reflectance (R) data into absorbance (A) and Kubelka–Munck
(KM) data;

(3) analyse the R, A and KM spectra by using multivariate cali-
bration tools to relate to the EPC data measured by standard
pour plate method;

(4) develop full wavelength models and examine their perfor-
mances in EPC prediction;

(5) select the most important wavelengths to simplify the full
wavelength models; and

(6) apply the best simplified model to each pixel of 2-D images
and produce the EPC distribution maps to visualize the
spatial variation of EPC values in salmon flesh.

2. Materials and methods

2.1. Salmon samples and subsampling

Salmon samples were prepared by vacuum-packing fresh edible
farmed salmon fillets (Salmo salar) (n = 30) in plastic trays and
transported in an ice chest from a local seafood supermarket to lab-
oratory of Food Refrigeration and Computerised Food Technology
(FRCFT), University College Dublin, Ireland, within 30 min. Then,
subsampling was conducted by cutting all fish samples into cubes
(�10 g) which had the size of 3 cm (length) � 3 cm (width) � 1 cm
(thickness). Ninety-four subsamples (n = 94) in total were finally
obtained, repacked, labelled and then stored in cold condition
(4 �C) for further image acquisition and microbiological test.

2.2. Hyperspectral image acquisition

At each testing day (Day 0, 3, 6, 8, 10 and 13), a set number of
subsamples (�15) were placed on the moving platform of a lab NIR
hyperspectral imaging system and scanned in reflectance mode to
acquire the raw hyperspectral images of subsamples. The whole
hyperspectral imaging system is mainly composed of a spectro-
graph (Specim ImSpector N17E, Spectral Imaging Ltd., Oulu,
Finland), a CCD camera (SUI Goodrich SU320M-1.7RT, a 12-bit high
performance of 320 spatial � 256 spectral), a moving platform
(MSA15R-N, AMT-Linearways, SuperSlides & Bushes Corp., India),
an illumination unit (V-light, Lowel Light Inc, USA) and a computer
installed with an image acquisition software (SpectralCube,
Spectral Imaging Ltd., Oulu, Finland). Detailed information on the
system can be found in the study of He et al. (2013a). The acquired
hyperspectral image of each subsample was comprised of a
series of continuous sub-images at wavelength from 897 to
1753 nm. In this work, the hyperspectral image at the wavelength
range of 900–1700 nm (239 spectral bands) was used for data
analysis because of low signal-to-noise ratio beyond this range.

2.3. Image pre-processing and spectral extraction

The raw hyperspectral images of subsamples were required to be
calibrated into reflectance images, as the signal intensity was first
collected by the CCD camera of the NIR hyperspectral imaging
system. Together with two other reference images, white and
black, all hyperspectral images were calibrated using the follow
formula:

R ¼ R0 � RB

RW � RB
� 100 ð1Þ

where R is the calibrated reflectance image, R0 is the raw image, RB

is the black image (�0% reflectance) and RW is the white image
(�99.9% reflectance). Among, the RW was obtained by recording
an image of a white tile while the RB was achieved by covering
the lens with cap and then collecting an image after turning off
the light source completely.

With the help of ENVI v4.6 software (Research Systems Inc.,
Boulder, CO, USA), the regions of interest (ROIs) of calibrated
hyperspectral images of subsamples were identified and isolated
from the background using ROI Tool attached in ENVI software.
The spectral profiles of all pixels within each ROI were extracted
and averaged into one reflectance spectrum representing the ROI.
Then, the reflectance spectra were transformed into A and KM
spectra using the following Eqs. (2) and (3), respectively.
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