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a b s t r a c t

Two-phase flow modeling is a general problem in science and engineering. Two-phase flow phenomenon

is inherently complicated and characterized by a large number of flow variables. It is historically known

that the lack of proper dimensionless numbers in two-phase flow is one of the major shortcomings as

compared to single-phase flow. A new dimensionless number (Slippage Number) for gas–liquid flow in

pipes is proposed in this paper. The number is defined as the ratio of the difference in the gravitational

forces between slip and no-slip conditions to the inertial force of the gas. It is found to be a function

of Froude number based on the mixture velocity especially in the elongated bubble, slug, churn, bubble,

and high film thickness wavy annular flow patterns. The liquid holdup data for a wide range of fluid and

flow conditions (different viscosities, densities, pipe diameters, inclination angles, gas and liquid flow

rates) can be correlated with a single curve using the Slippage Number. The value of the number varies

from highest to lowest for bubble, elongated bubble, slug, churn, stratified and annular flow patterns,

respectively. It is close to zero for homogeneous flow patterns like mist and dispersed bubble flows. We

also show that this number may be used as a flow pattern identifier.

© 2015 Elsevier Ltd. All rights reserved.

Discussion on currently available relevant dimensionless

numbers

A survey of related (or somehow close in mathematical formu-

lation to the proposed one) dimensionless numbers are presented

in this section. The closest dimensionless number to the proposed

one is the Richardson Number, Ri. Ri is defined as the ratio of the

buoyancy force to inertial force (Eq. (1)). It can also be found by

multiplying the density ratio, �ρ/ρ , with the Froude number, Fr.

Sometimes, it is even called Froude number, Fr.

Ri = (�p)gD

pv2
(1)

Ri is used in a single-phase flow in pipes when there is a

change in the density, or in multiphase flow in pipes when there

is a gas bubble in liquid in which the density ratio is represented

by the difference between the gas and liquid densities to the liquid

density. If Ri is very close to one, then the flow is most likely to be

buoyancy-driven flow.

Sometimes, Ri is presented as the ratio of the buoyancy term to

the flow gradient term as: (Eq. (2))

Ri = (∇p)g

p(∇v)
2

(2)
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It is of practical importance in weather forecasting and in in-

vestigating density and cloudiness or haziness of liquid currents

in oceans, rivers, lakes, and reservoirs. The cloudiness or haziness

sometimes called turbidity, which is a test of water quality due to

presence of invisible particles to the naked eye.

In aviation, Ri is a measure of kinetic energy, and it measures

air turbulence possibilities. A lower value of Ri means more se-

vere turbulence, and a value between 10 and 0.1 is typical. Along

the same line as Ri is what so-called Wedderburn number, W, (see

Shintani et al. 2010). In Wedderburn number the used density ra-

tio is the difference between the density of the upper and lower

layers fluid to the lower layer fluid density.

The other dimensionless number, which is close to the pro-

posed one, is Froude Number, Fr. It is defined as the ratio of the

inertial force to the gravitational force as given in Eq. 3.

Fr = v2

gD
(3)

Different forms of Froude number can be found in the litera-

ture. The most known are the ones used by Lockhart and Martinelli

(1949) as given by Eqs. (4) and ( 5) for liquid and gas phases, re-

spectively.

Frl =
√

plv2
SL

(pl − pg)gD cos θ
(4)
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Frg =
√

pgv2
SG

(pl − pg)gD cos θ
(5)

The new dimensionless number (Slippage Number, SL)

In gas–liquid flow, the average two-phase flow mixture density

or the slip-density, ρTP, is different from the homogenous or no-

slip density of the mixture, ρH, due to slippage between phases.

The no-slip mixture density, ρH, is simply calculated based on the

ratio of the volume flow rate of the phases assuming no slippage

between the phases. The slip density, ρTP, is calculated based on

the actual or measured liquid holdup. The proposed dimensionless

number is defined as the ratio of the difference in the gravitational

forces between slip and no-slip conditions to the inertial force of

the gas (based on the superficial gas velocity or the volumetric flux

of the gas) as given by Eq. (6).

SL = (pTP − pH )gD

pv2
SG

(6)

The average two-phase flow density based on the in-situ liquid

holdup and the average two-phase density based on homogeneous

(no-slip) holdup or liquid volume fraction are defined in Eqs. (7)

and (8), respectively.

pTP = pLHL + (1 − HL)pG (7)

ρH = λLβL + (1 − λL)ρG (8)

Above, ρG, ρL, HL, and λL, are: gas density, liquid density, ac-

tual liquid holdup, and liquid volume fraction, respectively. λL is

defined by Eq. (9)

λL = vSL

vSL + vSG

= vSL

vM

, (9)

where, vSL, vSG, and VM are superficial liquid velocity, superficial

gas velocity, and mixture velocity, given with Eqs. (10) and (11),

respectively.

vSL = WL

ρLAP

, (10)

vSG = WG

ρGAP

, (11)

where, WL and WG are liquid and gas mass flow rates, respectively.

The value of Slippage Number, SL, for a given pipe diameter and

fluids depends on the superficial gas velocity and the difference

between the mixture densities. The difference in the mixture den-

sities is very much function of the flow pattern and the slippage

between the phases. For example, for bubbly flow typically expe-

rienced at low gas superficial velocities, the number will be high.

However, for annular or mist flow at high superficial gas veloci-

ties, the value of the number will be very low since the slippage is

minimum, and the liquid droplets are carried by gas, especially, for

low vSL or small liquid film thicknesses. Slug flow in a vertical pipe

involves falling film and significant slippage between the phases.

Thus, the difference between the slip and no-slip densities is large

resulting in a relatively large Slippage Number. Churn flow in verti-

cal pipe can be observed at higher gas velocities than those of slug

flow. Thus, the value of this number is less than that in slug flow.

The elongated-bubble flow is considered to be a simple case of slug

flow when the liquid slug is free of entrained bubbles. This occurs

at relatively lower gas rates compared to slug flow. Thus, the slip-

page between gas and liquid expected to be larger than slug flow,

and hence, the difference between the two densities is larger as

well as the Slippage Number. Dispersed bubble flow has much less

slippage between phases in the pipe resulting in Slippage Number

very close to zero. Therefore, this number can be used as a quick

Fig. 1.A. Slippage Number versus Froude number based on mixture velocity for

Alruhaimani (2015) experimental data.

flow pattern identification method. Moreover, it can be very use-

ful in modeling of gas–liquid flows in pipes, especially in drift flux

approach, since the drift flux approach is based on the slippage

between the phases.

Results

Initially, the relationship between the Slippage Number, SL, and

the mixture Froude number, FrM, is demonstrated in this section

using recent experimental data of Alruhaimani (2015). The mixture

Froude number, FrM, is defined as in Eq (12)

FrM =
√

ρL

ρL − ρG

vM√
gD

(12)

Then, the results of nine different experimental data sets cover-

ing wide range of fluids properties, pipe diameter, inclination an-

gles and operational conditions with different flow patterns are

presented. Dispersed and mist flow patterns are not considered

since, in both flows, the phases are homogeneously mixed and flow

with the same velocity with negligible slippage.

High viscosity oil and air flow in upward vertical pipes

(Alruhaimani, 2015)

Alruhaimani (2015) experimental data for air–oil flow in a verti-

cal 0.0508 m diameter pipe are used to validate the proposed rela-

tion between SL and FrM. Tests were conducted for various oil vis-

cosities, namely, 586, 401, 287, 213, 162, and 127 mPa·s. The super-

ficial liquid and gas velocities were varied from 0.05 m/s to 0.7 m/s

and from 0.5 m/s to 5 m/s, respectively. The flow patterns observed

were slug, churn and annular flows.

Figs. 1.A. and 1.B. show SL vs. FrM in Cartesian and Semi-log co-

ordinate systems, respectively. As seen from the Fig., there is an

excellent correlation between SL vs. FrM for all tested flow patterns

(slug, churn flow and annular). Eq. (13) gives the correlation ob-

tained through curve fitting. In addition to high viscosity oil and

air tests, air–water experiments also have been conducted using

the same facility. The air–water results plotted on the same plot

shows an excellent agreement with high viscosity oil and air data.

SL = 300.13Fr
−2.425

M (13)

where FrM is the mixture Froude number.

In Fig. 1.C. the data were sorted based on the observed flow

patterns. It can be seen that the SL varies from highest for

slug flow to lowest for the annular flow. It is noted here that

Alruhaimani (2015) could not visually or using the normalized

voltage histogram from the capacitance sensors determine the type
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