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a b s t r a c t 

The long wave-length dynamics and stability of a bed of sand occupying the lower segment of a circular 

pipe are studied analytically up to first-order in the small parameter characterizing the slope of the bed. 

The bed is assumed to be at rest, with at most a thin sand layer (the bedload) moving at the sheared 

interface. When the sand bed is plane, with depth independent of position z along the axis of the pipe, 

the velocity of the liquid is known from previous studies of stratified laminar flow of two Newtonian 

liquids (the lower one with infinite viscosity representing the sand bed). When the depth of the sand 

bed varies with z , secondary flows develop in the cross-sectional ( x , y ) plane, and these are computed 

numerically, assuming that the sand bed remains a straight horizontal line in the cross-sectional plane. 

The mean shear stress acting on the perturbed sand bed is then determined both from the computed sec- 

ondary flows and by means of the averaged equations of Luchini and Charru. The latter approach requires 

knowledge only of the flow over the unperturbed, flat sand bed, combined with an accurate approxima- 

tion of the distribution of the perturbed stresses between the pipe wall and the sand bed. The perturbed 

stresses determined by the two methods agree well with each other. Using these stresses, it is then pos- 

sible to apply standard theories of bed stability to determine the balance between the destabilizing effect 

of inertial (out-of-phase) stresses and the stabilizing effects of gravity and relaxation of the particle flux, 

and various examples are considered. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The transport of sand/water slurries along a horizontal pipeline 

is of commercial importance, and has therefore been the sub- 

ject of many studies, reviewed by e.g., Peker and Helvacı (2008) ; 

Goharzadeh et al. (2013) ; and Soepyan et al. (2014) . The predic- 

tion and control of transport (or settling) of entrained sand in 

petroleum pipelines is similarly important ( Salama, 20 0 0 ). 

At high fluid velocities the particles are suspended and flow 

with the fluid. However, at low velocities the particles (if denser 

than the fluid) sediment under gravity, and a stationary bed of par- 

ticles forms on the lower side of the pipe ( Turian et al., 1987 ). Our 

interest here lies in the regime of moderate fluid shear stress on 

the bed, when particles at the bed surface are slowly entrained 

into a thin moving layer (e.g., Oroskar and Turian, 1980; Takahashi 

and Masuyama, 1991; Doron and Barnea, 1995, 1996; Turian et al., 

1987; Peysson et al., 2009 ). This moving layer (the bedload layer) 

has a thickness of just a few particle diameters. 
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Many studies have concentrated on the flow rates of the sand 

and water as functions of the applied pressure gradient (e.g., Doron 

et al., 1987; Kuru et al., 1995; Ouriemi et al., 2009a ). However, 

a crucial issue for bedload transport is the shear stress exerted 

by the fluid flow over the bed: this stress determines the parti- 

cle flow rate. The upper surface of the bed is usually wavy (rather 

than plane), so that the shear stress and particle flow rate are 

non-uniform in the streamwise direction, leading to the propaga- 

tion of a complex pattern of sand waves, see e.g., the review by 

Charru et al. (2013) . These waves are of both scientific and engi- 

neering interest: ripples and dunes are known to have strong con- 

sequences on flow rates and pressure gradients ( Takahashi et al., 

1989; Takahashi and Masuyama, 1991; Ouriemi et al., 2009b; Al- 

Lababidi et al., 2012 ). 

The aim of this paper is to provide a set of area-averaged equa- 

tions governing slow variations of the fluid flow and sand bed, 

consistent up to first-order in the small-slope parameter. We then 

use these equations to analyze the linear stability of the bed. The 

analysis is restricted to laminar flow, with the usual quasistatic as- 

sumption that the time scale for bed height variations is long com- 

pared to the hydrodynamic time scale, so that the flow may be 

calculated as if the bed profile were fixed. 
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We first ( Section 2 ) discuss the velocity profile and shear 

stresses in fluid flowing through a pipe in which the sand bed 

is uniform along the length of the pipe. When the height of the 

sand bed varies slowly in the axial direction, not only is there a 

slow variation in the axial velocity of fluid along the pipe, but sec- 

ondary flows are set up in the cross-section. Such flows are dis- 

cussed in Section 3 . In Section 4 we review a standard theory for 

the movement of sand grains at the bed surface due to the hydro- 

dynamic bed stress. In Section 5 we derive the set of area-averaged 

equations for the fluid flow rate, particle flow rate and bed height, 

assuming that the sand flux is a function of the mean stress av- 

eraged over the width of the bed (the detailed stress distribution 

is ignored). The equations are based on the analysis of Luchini 

and Charru (2010a ) of slowly-varying laminar flows which appeals 

to the stationarity of the viscous dissipation term in the energy 

equation, combined with the approximation that the ratio of the 

shear force acting on the bed to the shear force acting on the wet- 

ted wall of the pipe is the same at first-order as at zeroth-order. 

These equations, although consistent up to the first-order in the 

small-slope parameter, require only the parallel-flow analytical re- 

sults ( i.e., they do not require the calculation of the first-order flow 

disturbance over the slowly-varying sand bed). The validity of this 

analysis is confirmed by comparison with the full first-order nu- 

merical results presented in Section 3 . As an illustration of the use 

of the area-integrated equations, a stability analysis of the plane 

bed is performed in Section 6 . 

The analysis is restricted to Newtonian fluids, and therefore is 

inappropriate for either concentrated slurries of particles or for 

non-Newtonian crude petroleum: however, it is a useful starting 

point even for such for fluids. The Reynolds number will be re- 

quired to be sufficiently low for the basic flow within the pipe 

to be laminar, but, as is standard in long wavelength analysis of 

nearly parallel flow, the Reynolds number need not be small com- 

pared to unity (as will be discussed in Section 3 ). The regime that 

we shall investigate is that in which particles at the surface of the 

sand bed are just starting to move due to the stress imposed on 

them by the fluid flowing above them in the pipe. Thus the analy- 

sis applies to a restricted range of flow rates which is, nevertheless, 

an important one, since it separates the regime in which the bed 

is at rest (growing slowly if further particles are deposited) from 

that in which the particle bed starts to be eroded (as would be 

required for cleaning out the pipe). We shall re-visit these restric- 

tions in Section 7 , where they can be made explicit in terms of the 

analysis of Sections 2 –6 . 

2. Liquid flow through a pipe with a uniform sand bed 

The geometry that we consider is shown in Fig. 1 . The pipe has 

radius R . A bed of sand at the base of the pipe subtends an angle 

2 δb at the center of the pipe, and has a plane, horizontal upper 

surface AEC. The upper part of the pipe is occupied by liquid, and 

the portion of the circular pipe wall that is wetted by liquid sub- 

tends an angle 2 δw 

= 2(π − δb ) at the center of the pipe. 

We set up Cartesian coordinates, with z axis parallel to the axis 

of the pipe and with ( x , y ) in the cross-sectional plane of the pipe. 

The y axis is vertical, along the symmetry axis, and the x axis is 

horizontal, joining the two triple points A and C where liquid, the 

pipe wall and the sand bed meet ( Fig. 1 ). We assume that the in- 

terface between the sand bed and the liquid is plane, and that it 

coincides with the x axis y = 0 . We shall occasionally use cylin- 

drical polar coordinates ( r , ψ , z ), with ψ = 0 directed along the y 

axis. 

The cross-sectional area A of the portion of pipe occupied by 

liquid can be found by elementary methods, and is 

A = R 

2 
(
δw 

− 1 
2 

sin 2 δw 

)
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Fig. 1. Cross-section of the pipe, with sand at the bottom, and liquid above. The 

pipe has radius R and the maximum sand bed depth, EB, is h (3) . The sand bed 

width AEC has length C b , and the length of the wetted wall ADC is C w (2) . 

In the cross-section, the length C b of the sand bed, and the length 

C w 

of the portion of the cylindrical wall wetted by liquid, are 

C b = 2 R sin δb , C w 

= 2 Rδw 

. (2) 

The maximum height of the sand bed, at x = 0 , is 

h = R (1 − cos δb ) = R (1 + cos δw 

) , (3) 

and we note for future use that 

∂A 

∂h 

= −C b , 
∂C b 
∂h 

= −2 cot δw 

. (4) 

Particle velocities in the bedload layer are much smaller than 

the bulk fluid velocity, typically a fraction of the fluid velocity at a 

distance of one particle diameter above the bed at rest. Hence it is 

usual to calculate the fluid flow as if the wavy bottom were fixed 

( Charru et al., 2013 ), and the errors introduced by this approxi- 

mation are small. The liquid therefore satisfies a no-slip boundary 

condition both at the bed/liquid interface and on the circular wall 

of the pipe. 

Flow of two fluids in such a geometry has been well studied 

( Bentwich, 1964; Ranger and Davis, 1979; Brauner et al., 1996; 

Biberg and Halvorsen, 20 0 0 ), because of its importance when 

pumping two fluids that have separated due to their density dif- 

ference. If the viscosity of the lower fluid is taken to be infinite, 

this lower fluid becomes stationary, and the flow of the upper fluid 

corresponds to fluid flowing above a sand bed. We present a short 

summary of the analysis and analytic predictions for this case of a 

uniform flat bed in Appendix A . However, we shall eventually need 

to use numerical methods, and it is convenient to do so even for 

the simplest case of a uniform sand bed. The analytic results then 

provide a useful check on the accuracy of the numerical scheme. 

The liquid is assumed to be Newtonian and incompressible, 

with density ρ and viscosity η. If the bed of sand is uniform, the 

liquid velocity w in the z direction satisfies (
∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 

)
w = −G/η, (5) 

where −G < 0 is the axial pressure gradient. We solved the Poisson 

Eq. (5) , subject to a no slip condition at the boundaries, by means 

of the finite element package FreeFem ++ ( Hecht, 2012 ). By way of 

example, Fig. 2 shows isolines of the velocity w (x, y ) , normalized 

by Q / R 2 where Q is the volumetric flow rate, for the case h/R = 0 . 5 . 

Note that the maximum velocity is greater than the value 2/ π for 

h/R = 0 , as expected. 
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