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a b s t r a c t

Recurrence plots have been used to analyze and characterize the investigated fluidization regimes: bub-
bling, slugging and turbulent. Recurrence plots can be qualitatively analyzed considering the distribution
of their local white areas (LWA) and local bold areas (LBA). The LWA reflect the macro-scale structure in
the bed and appreciably increase for slugging regime because of the increase of the bubble phase con-
tribution to the fluidization dynamics. On the other hand, the LBA, reflecting meso-scale and micro-scale
structures, decreases. Several recurrence quantification analysis parameters (RQA) have been computed
for the different regimes analyzed and the most appropriate ones have been chosen to characterize and
classify the fluidization regimes. It has been found out that the determinism (DET), the average diagonal
length (L), the laminarity (LAM), the trapping time (TT) and the recurrence time of type 2 (RET2) detect
the evolution from bubbling to slugging regime. The evolution from bubbling to turbulent regime can be
detected with all the investigated RQA parameters. A combination of two RQA parameters gives an
excellent classification map which distinguishes the slugging from the bubbling regime.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

Complex dynamic systems are commonly found in many
chemical industry operations. Particularly when the process
involves multiphase flow systems, its behavior analysis and its
modeling involve additional difficulties due to the interaction
between the different phases and the simultaneity of the phenom-
ena taking place.

The gas–solid fluidization has been widely used in industrial
applications for many decades in operations where a good contact
between the two phases is needed. Gas–solid reaction, solids dry-
ing, combustion and gasification are typical applications. Due to its
complexity, further study is still needed to improve the efficiency
and operation control. Fluidization can operate in different
regimes, such as bubbling or turbulent regimes; however, slugging
fluidization can also appear. This regime must be avoided because
of the amount of gas that does not contact with the solid, thus
adversely affecting the operation efficiency.

The fluidization regimes have been studied with several meth-
ods, sometimes using sophisticated techniques, such as optical
probes (Bai et al., 1997), laser beams (Briongos and Guardiola,
2003) and tomography (Makkawi and Wright, 2002). However,
the analysis of pressure fluctuations in the fluidized bed is one of

the most popular techniques because the data acquisition is easy
to implement, even in industrial facilities, and the analysis of data
time series provide abundant and meaningful information.

Since the presence of chaotic behavior in gas–solid fluidization
was suggested (Stringer, 1989), the deterministic chaos theory has
been developed and used to study gas–solid fluidization and other
multiphase flows. Usually, the system state space invariants are
computed and analyzed, since they are sensitive to changes in
the fluidization regime (van den Bleek and Schouten, 1993;
Johnsson et al., 2000; Llop et al., 2012). An alternative procedure
can be used to characterize the attractor by computing its dynamic
moments (Annunziato and Abarbanel, 1999; Llauró and Llop,
2006).

Recently, an original technique for the nonlinear analysis of
pressure fluctuation time series in fluidized beds has been intro-
duced. The recurrence patterns are fundamental characteristics of
many dynamical systems. These recurrences, obtained from the
phase-space trajectories, can be useful to characterize the system
dynamics when properly explored. Eckmann et al. (1987) intro-
duced the recurrence plots (RPs) to visualize the recurrences in
two dimensional plots. Zbilut and Webber (Zbilut and Webber,
1992; Webber and Zbilut, 1994) developed the recurrence quan-
tification analysis (RQA) to quantify the RPs morphology.

RPs have been used to study the hydrodynamics of fluidization
in bubbling and turbulent regions (Babaei et al., 2012;
Tahmasebpour et al., 2013a), to recognize flow regimes in spouted
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beds (Wang et al., 2012) and to monitor the hydrodynamics of gas–
solid fluidized beds (Babaei et al., 2013).

In this paper, we analyze the pressure fluctuations of gas–solid
fluidization by means of recurrence plots and recurrence quan-
tification analysis. Three different regimes of fluidization have
been investigated: bubbling, slugging and turbulent. The morphol-
ogy of RPs has been analyzed to identify recurrence patterns
related to the dynamic structure of the different fluidization
regimes. The evolution in each of the regimes has been described
with several RQA parameters. Those that are more convenient to
characterize and classify fluidization regimes have been selected.
The use of these parameters must be done carefully, because
misinterpretation can lead to incorrect conclusions.

The aim of this work is to contribute to a better understanding
in using this complex technique for the analysis and interpretation
of the pressure fluctuations of fluidized beds. Comprehensible
maps for the fluidization regime classification with the RQA
parameters are introduced.

Background

Deterministic dynamic systems can be depicted in a state space
of appropriate dimension so that the sequence of each state gener-
ates a trajectory defining the system. If the trajectory is attracted
towards a region of the space it becomes an attractor which is
characteristic of chaotic systems. Kolmogorov entropy, correlation
dimension and Lyapunov exponents have been the most popular
invariants used to characterize the attractor. When the system can-
not be described with differential equations, the attractor can be
reconstructed from experimental time series by using the original
data and copies delayed in time (‘‘Embedding theorem’’ postulated
by Takens, 1981).

Many dynamic systems exhibit a recurrent behavior and the
recurrence of the states is a fundamental and typical property of
nonlinear systems. Hence, a way to analyze the nonlinear system
is to characterize the intrinsic pattern of repetition of state space
trajectories with recurrence plots.

Recurrence plots

As pointed out above, the attractor of a system can be recon-
structed from time series of experimental data. In this case, the
pressure fluctuations of the fluidized bed,

~xðtÞ ¼ fxðt1Þ; xðt2Þ; xðt3Þ; . . . ; xðtnÞg ð1Þ

From the original data the state space vectors can be obtained,

~yiðtÞ ¼ fxðtiÞ; xðtiþsÞ; xðtiþ2sÞ; . . . ; xðtiþðm�1ÞsÞg ð2Þ

where s is the delay and m the embedding dimension, which
must be carefully selected. The set of equation vectors (2) define
the reconstructed attractor. The delay can be obtained from the
minimum of original time series mutual information and the mini-
mum embedding dimension by the method of the False Nearest
Neighbours (Abarbanel, 1996). Obviously, for dimensions higher
than three the visualization of the state space trajectory (attractor)
becomes very difficult.

Recurrences of the phase space trajectory can be visualized in a
two dimensional plot using the tool called Recurrence Plot (RP)
which is independent of the trajectory dimension (Eckmann
et al., 1987). The recurrence concept is very easy: the recurrence
for a time series is when a point of the trajectory repeats itself.
Repetition means that a point is close enough to another one
within an interval of error suitably selected.

An RP is generated from the reconstructed attractor by comput-
ing the matrix Ri,j(e) whose mathematical definition is:

Ri;jðeÞ ¼ Hðe� k~yi �~yjkÞ i; j ¼ 1;2;3; . . . ;N ð3Þ

where N is the number of considered states in the space state

(~yi), ~yi and ~yj 2 Rd are two different points of the space trajectory,
e is a threshold or radius of neighborhood, k�k represents the norm
and H the Heaviside function HðhÞ ¼ f1jh > 0; 0jh 6 0g. In other
words, the generated matrix can be defined as:

Ri;jðeÞ
1 : ~yi �~yj;

0 : otherwise

�
i; j ¼ 1;2; . . . ;N; ð4Þ

~yi �~yj means that the states are the same within an error or inside a
threshold distance e. Thus the matrix indicates when the state of
the system is similar. From the N � N matrix of black and white
dots a two time-axes recurrence plot can be plotted. Recurrence
plots are useful to characterize the data and to find transitions
and interrelations. A RP has always a black main diagonal line, the
line of identity (LOI). Furthermore, from Eq. (3) it is apparent that
the RP is symmetric with respect to the main diagonal.

The threshold radius e is an essential parameter to generate
RPs. If e is too small, no recurrence points are detected and no
useful information will show up. On the other hand, if e is too
large, even consecutive points of the trajectory may be considered
a recurrence. Several criteria have been proposed in the literature
to select this parameter (Marwan, 2011). In this work the guide-
lines of Zbilut et al. (2002) and Zbilut and Webber (2006) has
been used.

Concerning the embedding dimension, several authors suggest
that it does not have a determining effect on the quantification
of the RP and, hence, any value can be chosen for this purpose
(Iwanski and Bradley, 1998; March et al., 2005). These authors sug-
gest that the embedding dimension can be just 1 if the data are to
be analyzed with RQA, which means that no embedding is actually
needed. About the delay, Webber and Zbilut (2005) advocated that
it is not a critical parameter and it can be chosen to be 1.This fact
makes it easier to analyze the time series by RPs. In this paper both
the dimension and the delay have been chosen accordingly to these
recommendations

Patterns

The whole structure of the black points in the RPs can configure
different geometric typologies. Marwan et al. (2007) pointed out
several different qualitative structures. They are called homoge-
neous when the uniformity is observed in all the zones of the RP;
as is typical of stationary systems; periodic, if the plot has several
diagonal lines and the structure of local zones is repeated to com-
plete all the RP; drift, when there is a slow variation of the parame-
ters, typical of non stationary systems, and the black points density
decreases from the main diagonal; disrupted, when sudden changes
occur in the dynamics of the system, originating wide areas of
white points.

If smaller scale structures are considered, the plot shows differ-
ent behavior characteristics. Single points are present when the
system does not persist or strongly fluctuates. Diagonal lines mean
that some segment of trajectories runs parallel to other segments.
Diagonal lines parallel to the LOI are due to the evolution of states
which are similar at different epochs. The process can be deter-
ministic if these diagonal lines are present beside single isolated
points; the process can be chaotic if these diagonal lines are peri-
odic, meaning that unstable periodic orbits exist. Horizontal or ver-
tical lines are originated when for a certain time there is no change
in the trajectory or it is very slow (indicating of laminar states).

Babaei et al. (2012) classified the patterns of the recurrence
plots of pressure fluctuations of gas–solid fluidization into two
groups; the local white areas (LWA) and the local bolt areas

44 M.F. Llop et al. / International Journal of Multiphase Flow 73 (2015) 43–56



Download English Version:

https://daneshyari.com/en/article/666613

Download Persian Version:

https://daneshyari.com/article/666613

Daneshyari.com

https://daneshyari.com/en/article/666613
https://daneshyari.com/article/666613
https://daneshyari.com

