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This study exposed results of investigations on the two-fluid laminar-laminar stratified flow in an
inclined channel. Multi-holdup regions have been mapped and visualized in a new way by plotting solu-
tion surface of the holdup equation. This representation clearly exhibits the link between backflow situa-
tion and multiple holdup solution occurence. The multiple solution problem can be addressed following

different approaches. First, the solutions of the two-fluid system are interpreted in term of the minimiza-
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tion of a potential function. Secondly, the minimization of the dissipation rate at the feasible holdup is
investigated and thirdly, a long-wave stability analysis is considered.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The stratified flow model presented by Taitel and Dukler
(1976b) is a one-dimensional, two-fluid mechanistic model widely
used to describe the transport of multiphase flows in chemical pro-
cess, nuclear and petroleum industries. This model assumes that
two fluids are flowing in two separate continuous layers without
mass transfer between the different phases and in steady, isother-
mal conditions. The two parameters of interest in the design of
such systems are the pressure drop and the holdup. Baker et al.
(1988) pointed out that the model can predict as many as three
solutions of the holdup for some inclined systems, which unluckily
often correspond to operating conditions. Landman (1991) dedi-
cated theoretical investigations on this issue and showed that the
occurence of multiple values for holdup and pressure drop persists
when considering the exact known solutions for laminar-laminar
flow in a channel.

Barnea and Taitel (1992, 1994a,b,c) carried out stability studies
and then recommended that both structural and interfacial Kelvin-
Helmholtz stability analyses must be performed to determine
which holdup solution actually occurs. For upwardly inclined
gas-liquid flow, the three solutions correspond to three liquid frac-
tion or liquid holdup. The thinest and the thickest holdup steady-
state solutions are accepted to be linearly stable with respect to
the structure, while the intermediate solution is unstable and thus
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not realizable. Performing non-linear structural stability analysis,
the thickest solution appears to be unstable in response to finite
disturbances. This instability was attributed to severe oscillations
before reaching the steady-state solution eventually passing
through negative net liquid flow rate. As a result, when a single
rather thick liquid holdup solution exists, this one is necessarily
linearly stable but may be unstable to finite disturbances at the
same time as observed by Barnea and Taitel (1992). These authors
stated that in this situation the smooth stratified flow pattern
would be replaced by another flow structure (waves, slug or annu-
lar flow for instance). Then before validating a solution, a comple-
mentary Kelvin-Helmholtz analysis focusing on the interface
stability must be performed in order to verify the validity of
the smooth stratified flow pattern assumption. According to the
authors, when multiplicity of the solutions is expected only the
thinest liquid holdup must be realizable.

To be noted that these results (Barnea and Taitel, 1992,
1994a,b,c) were obtained using wall shear stress closure laws
derived from the single-phase flow configuration. Unfortunately,
this kind of relation is not able to capture situation where local
backflow occurs near the wall while the net flow rates remain posi-
tive. Biberg (1999, 2002) and Biberg and Halvorsen (2000) exam-
ined the exact pipe and duct flow laminar solutions and put the
possibility of such situation forward. Looking at velocity profiles,
Ullmann et al. (2004) observed that backflow configurations are
usually linked to the intermediate and the upper liquid holdup
solution. Necessity of improving the usual single-phase-based clo-
sure laws by integrating the interaction between the phases was
thus pointed out. Recently, long wave stability analysis using exact
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laminar channel flow solutions has been performed by Kushnir
et al. (2014) on the specific issue of multiple solutions. It was sug-
gested the existence of a region where the three solutions are
stable to long wave disturbances and that the intermediate solu-
tion remain stable in the whole multiple solutions region.
Eventually, for regions where only one steady-state holdup is
expected, this last one may also be unstable as proposed by
Barnea and Taitel (1992, 1994a,b,c). It is worth noting that both
the Kelvin—-Helmholtz and the long waves interfacial stability
analyses aim at validate the existence of a smooth stratified flow
pattern. However, when multiple solutions are predicted for a
smooth stratified pattern, these analyses do not elucidate the ques-
tion of the solution to pick out.

In the present study, the multiple holdup occurence was inves-
tigated focusing on the backflow situation for the exact laminar
channel flow solutions. The steady-state holdup solutions were
represented as a response surface allowing the characterization
of these solutions in relation with physical considerations. Three
different approaches are reviewed to analyse the solution to pick
out. Firstly, a new approach is proposed by the mean of the catas-
trophe theory. This theory provides tools for the interpretation of
the occurence of the multiple holdup solutions and their stability.
Secondly, the principle of minimization of dissipation is also con-
sidered as a way to predict the most feasible solution. Finally, fol-
lowing Kushnir et al. (2014) a long-wave stability analysis is
performed and results were considered for the selection of the
holdup solution.

2. Modelling and holdup equation

In the stratified flow model presented by Taitel and Dukler
(1976b), the flow was supposed to be steady, fully-developed,
isothermal and unidirectional with no mass transfer between the
different phases. In Fig. 1 is described the configuration where
two fluids, a light one and an heavier one (denoted respectively L
and H), are flowing into a pipe inclined by the angle 0. For stratified
flow, the integral form of the continuity equations for the two
phases are:
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where h is the level of the heavy fluid, A; is the cross-sectional area
of the phase j (j = L, H), U; its mean velocity, y; the velocity shape
factors, S; the wall perimeter, p; the density, 7; and respectively 7;
the shear stresses exerted on the fluid j by the wall and respectively
the interface, and S; is the interfacial perimeter. P; is the mean pres-
sure in the section A; and P;; the pressure at interface, which could
be different in each phase due to surface tension effects.

The effect of surface tension is neglected (P;; = P;;) and the
average pressure gradient 9(A;P;)/0x is usually evaluated assuming
an hydrostatic evolution of the pressure in the section A;. This
assumption is reasonably adopted here, although the impact on
the separated flow models is discussed in the literature (see
Jones and Prosperetti (1985) for instance). Given that the interfa-
cial shear stresses are linked by t; = —ty = Ty, utilizing Eq. (1)
and (2) and subtracting Eq. (4)/A; to Eq. (3)/Ay yields:
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To remain valid, the formulation of the term F must include
the expression of the shear stresses evaluated in the general case
and not only at fully-developed steady-state solutions. The fully
developed steady-state solutions are characterized by the condi-
tion F = 0 and the shear stresses in this case can be analytically
expressed. At this stage, indeed, the common procedure is to use
closure laws in order to calculate 74,7, and 7;. In the past (Taitel
and Dukler, 1976b), these relations were first derived by analogy
with single-phase flow and many studies focused on improving
the precision of such closure laws for real configurations (Ng
et al., 2002, 2004 and Hanratty, 2013 for instance). Despite of
being more academic than practical, the simple case of
laminar-laminar flow between two infinite parallel plates
separated by distance D provides an exact analytical expression
of the velocity profiles when the fully developed steady state
flow is concerned. Thus, there is no need to use approximative
closure relations. In that case, using the continuity of the velocity
and the shear stress at the interface and integrating the velocity
profiles on both the phases, one may derive the following
expressions for the wall shear stresses at the steady-state
conditions:
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and

Fig. 1. Scheme of the stratified flow configuration.
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