International Journal of Multiphase Flow 66 (2014) 62-78

Contents lists available at ScienceDirect Muici
ulti; hse Flow

/’)\\\

International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmulflow

Towards the direct numerical simulation of nucleate boiling flows

@ CrossMark

S. Le Martelot **, R. Saurel *><, B. Nkonga ¢

ARS2N, Bastidon de la Caou, 13360 Roquevaire, France

> University Institute of France, CNRS, IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13, France
€ Aix-Marseille University, CNRS, IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13, France
dUniversity of Nice, LJAD UMR CNRS 7351, Parc Valrose, 06108 Nice Cedex, France

ARTICLE INFO ABSTRACT

Article history:

Received 19 September 2013

Received in revised form 27 June 2014
Accepted 29 June 2014

Available online 17 July 2014

A flow model is built to capture evaporating interfaces separating liquid and vapour. Surface tension, heat
conduction, Gibbs free energy relaxation and compressibility effects are considered. The corresponding
flow model is hyperbolic, conservative and in agreement with the second law of thermodynamics. Phase
transition is considered through Gibbs energy relaxation, in the same mind as in Saurel et al. (2008). Sur-
face tension effects are modelled following the lines of Brackbill et al. (1992). There is thus no need to
resolve the interface structure as jump conditions are inherent features of the model formulation. With

Keywords:' the present approach, the same set of partial differential equations is solved everywhere, in pure fluids as
Hyperbolic systems . . . . . .

Multifluid well as in the captured diffuse interface. There is thus a unique hyperbolic flow solver that handles flow
Multiphase dynamics, interface motion and eventually acoustic wave dynamics. To make distinction between “pure”
Phase change fluids and liquid-vapour mixture treatment, different sets of algebraic equations are considered in the
DNS relaxation solver. To guarantee accurate computation of the liquid and gas dynamics the preconditioned
Preconditioning implicit scheme of LeMartelot et al. (2013) is adapted to the present boiling flow model. The model and
HLLC method are validated against a one-dimensional test problem having exact solution. Multidimensional

computations are then shown to illustrate method capabilities.
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Introduction

This paper deals with the numerical simulation of boiling flows
with a DNS-like approach (Direct Numerical Simulation). This
research topic has important applications in nuclear and space
engineering, for example, and many other technical and environ-
mental areas. Existing heat and mass exchange correlations
(widely used in averaged multiphase flow models and codes) have
important limitations. The error bar covers several orders of mag-
nitude. Flow topology changes, from bubbly to separated flows
with vapour film at walls, have dramatic consequences on heat
exchanges. The main issue relies on the fact that averaged two-
phase flow models are unable to account for flow topology
changes. Therefore, DNS-like of boiling flows may help for the der-
ivation of sub-scale models. However, this research area is difficult
as liquid-gas interfaces are present, in conjunction with heat con-
duction, phase transition and surface tension effects. Only a few
numerical approaches deal with such flows, the most natural being
due to Tryggvason et al. (2001) and Juric and Tryggvason (1998),
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where the interface is considered as a sharp discontinuity, solved
with a front tracking algorithm. The other approaches consider
the interface as a diffuse zone.

With diffuse interface models, two different kinds of
approaches have to be mentioned.

The first one takes essence in chemical-physics with the pio-
neer work of Cahn and Hilliard (1958), also called in the literature
“second gradient theory” and “theory of Korteweg-type fluids”.
This theory works quite well in the vicinity of the thermodynamic
critical point where liquid and vapour density become very close.
The fluid density is considered as the order parameter and the fluid
internal energy is considered as a function of the density and the
density gradient. Considerable efforts have been done in this mod-
elling direction (see Anderson et al. (1998) for example). Examples
of computational works in this frame are reported in this last ref-
erence and in (Jamet et al., 2001). In addition to the very limited
density ratio at interfaces, another limitation appears. Indeed, the
interface capillary structure has to be resolved, which results in
very fine meshes and associated computational limitations.

The second diffuse interface approach takes essence in disconti-
nuity capturing methods and particularly Godunov contributions.
In this frame, discontinuities are captured as a consequence of
the conservative formulation of the equations. There is no need
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to resolve the internal structure of discontinuities as jump condi-
tions are present in the formulation. This approach has been com-
peting with front tracking methods during the 70s, with artificial
viscosity methods during the 80s, and is now used in nearly all
computational codes dealing with gas dynamics equations and
more generally with hyperbolic systems of conservation laws.
The present work belongs to this class of approaches.

The diffuse interface approach based on multiphase descrip-
tions of mixture cells with the help of hyperbolic systems with
relaxation is due to (Saurel and Abgrall, 1999). This approach has
shown its efficiency for the computation of flows in severe condi-
tions, with arbitrarily high pressure and density ratios, with appli-
cations ranging from detonation physics (Petitpas et al., 2009;
Saad, 1992; Saurel and Abgrall, 1999; Saurel et al., 2007; Saurel
et al., 2008; Saurel et al., 2009; Schoch et al., 2013), shock waves
in heterogeneous media, cavitating flows (Petitpas et al., 2009) to
solid mechanics (Favrie et al., 2009). The difficulties are related
to the models and numerical schemes building, especially when
non-conservative equations are present. In this paper, low speed
boiling flows are considered through a specific diffuse interfaces
formulation.

To deal with interface zones in local mechanical and thermal
equilibrium, a reduction of the Kapila et al. (2001) model is done.
The model considered in the present paper is a temperature equilib-
rium version of the model derived in (Saurel et al., 2008). Mechan-
ical and thermal equilibrium reduction is justified as, to model
phase change, conductive heat transfer is needed. As a consequence
there is no temperature discontinuity (in the frame of DNS like
approach) at the interface and a single temperature model is appro-
priate. To be more precise, Kapila et al. (2001) model involves two
temperatures and is well suited for interfaces computations as tem-
perature and entropy discontinuities are present when the interface
separates two non-miscible fluids, such as for example liquid water
and air. When heat conduction is present, the temperature becomes
continuous and a single temperature model is more appropriate.
Indeed, the conduction layer has to be solved in the present context
of boiling flows, as in flame computations. The temperature equilib-
rium model involves four partial differential equations only, is
hyperbolic and conservative. Gibbs free energy relaxation terms
are considered to model phase change. The flow model is in agree-
ment with the second law of thermodynamics. It is reminiscent of
the reactive Euler equations, widely used in combustion modelling.
The main difference appears in the fact that each phase occupies its
own volume, contrarily to gas mixtures, where each gas component
occupies the entire volume. This difference has serious conse-
quences regarding the thermodynamic closure. For gas mixtures,
the mixture equation of state derives from the Dalton law. Here,
it is derived from the mixture energy definition and temperature
and pressure equilibrium conditions.

From the basic temperature equilibrium flow model with four
partial differential equations, extra physics is added to deal with
boiling flows. Surface tension effects are modelled with Brackbill
et al. (1992) method, already considered in the context of com-
pressible fluids (Perigaud and Saurel, 2005). Heat conduction and
gravity effects are also added.

The second issue addressed in the paper is related to the
numerical approximation of the flow model, especially hyperbolic
and elliptic parts, capillary terms and thermochemical relaxation.

The hyperbolic step is solved with a variant of the preconditioned
implicit hyperbolic solver detailed in (LeMartelot et al., 2013). It is
an extension of Guillard and Viozat (1999) method for low Mach
number flows, this method being itself a conservative and time
accurate extension of Turkel (1987) preconditioning algorithm.

The relaxation solver used to fulfil interface conditions of evap-
orating interfaces is detailed with particular attention paid to the
single phase limit. The hyperbolic and relaxation solvers are then

combined to solve the flow model in 1D, obviously in absence of
capillary effects, to check model and method convergence against
an exact solution of sharp evaporating interface. Convergence
being reached in 1D, computational boiling flows examples are
shown in 2D with the various needed physical effects. A 2D config-
uration with several bubbles is considered and computed. From
this first computation, a new physical feature appears, never
reported before in the authors knowledge. Starting from an initial
situation where some nucleation sites are present, bubbles appear
dynamically from the sites location, but also from other locations
where perfect wall conditions are used. The bubbles appearance
and size selection thus appear as a self sustained process indepen-
dent of nucleation sites. Dynamic interfaces appearance was a fea-
ture already observed in the context of cavitating flows, using the
temperature non-equilibrium model shown in section ‘Out of equi-
librium model'.

Model building

The starting point of the analysis relies on the mechanical equi-
librium, temperatures non-equilibrium flow model of Kapila et al.
(2001), where heat and mass exchanges have been inserted (Saurel
et al., 2008).

Out of equilibrium model

The model given in the last reference reads:
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The total energy is defined as E = Yie; + Y,e; + lueu where
Y= % represent the mass fractions and p = ", (oxp,) the mix-
ture density. This model is hyperbolic with the same wave speeds
as the gas dynamics equations but with Wood (1930) sound speed,
cw, Which presents a non monotonic behaviour with respect to the
volume fractions (o),
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where ¢, represents the sound speed associated to phase k.

It is worth to mention that the sound speed is always defined,
provided that each phase has a convex equation of state. This fea-
ture is not satisfied by mixture flow based on cubic equations of
state, like the Van der Waals one. The present equation of state pro-
viding the thermodynamic closure is obtained from the mixture
energy definition and the pressure equilibrium condition. This
equation of states involves at least three argument: P = P(p, e, a4).
For example, when each phase obeys the stiffened gas equation of
state (see Le Métayer et al. (2004) for parameters determination),

Pr= (Y — Dprlex — i) — PPk (3)
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