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a b s t r a c t

The effects of co-current flows on a rising Taylor bubble are systematically investigated by a front track-
ing method coupled with a finite difference scheme based on a projection approach. Both the upward (the
co-current flows the same direction as the buoyancy force) and the downward (the co-current moves in
the opposite direction of the buoyancy force) co-currents are examined. It is found that the upward co-
current tends to elongate the bubble, while the downward co-current makes the bubble fatter and
shorter. For large Nf (the inverse viscosity number), the upward co-current also elongates the skirted tail
and makes the tail oscillate, while the downward co-current shortens the tail and even changes a dimpled
bottom to a round shape. The upward co-current promotes the separation at the tail, while the downward
co-current suppresses the separation. The terminal velocity of the Taylor bubble rising in a moving flow is
a linear combination of the mean velocity (UC) of the co-current and the terminal velocity (U0) of the bub-
ble rising in the stagnant liquid, and the constant is around 2 which agrees with the literature. The wake
length is linearly proportional to the velocity ratio (UC/U0). The co-currents affect the distribution of the
wall shear stresses near the bubble, but not the maximum.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of Taylor bubbles rising through vertical tubes
filled with another viscous fluids has been an interesting subject
for decades due to their wide existence in many engineering appli-
cations and real life, such as: nuclear reactors, oil–gas pipelines,
steam boilers, heat exchangers, and blood flows. Taylor bubbles
usually have a rounded leading edge, a long cylindrical middle part,
and a trailing edge with either rounded, or flattened, or dimpled
shape. The length of Taylor bubbles can be as long as several
diameters of the tube, and they almost fully occupy the cross-
section of the tube, and thus a thin film appears between the
bubbles and the tube inner walls.

The literature on Taylor gas-bubbles rising in initially stagnant
fluids is abundant and the pioneer research was performed by
Dumitrescu (1943) and Davies and Taylor (1950). They theoreti-
cally found that the rising velocity of a Taylor bubble in the inviscid
limit is: U0 ¼ a

ffiffiffiffiffiffi
gD

p
, where g is gravitational acceleration, D

denotes the tube diameter, and the value of the coefficient a is
around 0.33–0.35. This correlation has been confirmed by experi-
mental observations (Campos and Guedes de Carvalho, 1988;
Polonsky et al., 1999). The motion of Taylor bubbles was reviewed
by Clift et al. (1978) and Fabre and Liné (1992) in great detail. The
dynamics of the Taylor gas bubble rising in a stagnant viscous fluid

is governed by a group of non-dimensional numbers, namely: the
Eötvös number (Eo), the Archimedes number (Ar) or the inverse
viscosity number (Nf), the Reynolds number (ReT), the Weber num-
ber (WeT), the Froude number (Fr), the density ratio (g), and the
viscosity ratio (k), and these numbers are defined as:
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lb
:

In these definitions, the viscosities and the densities of the sus-
pending fluid and the bubble are denoted by ls and lb, qs and qb,
respectively; g is the gravitational acceleration; r stands for the
surface tension coefficient and is assumed constant; U0 is the ter-
minal velocity of the bubble. Recently, universal correlations for
the rising velocity of Taylor bubbles in stagnant fluids contained
in circular tubes were proposed by Viana et al. (2003) by analyzing
hundreds experimental data from the literature. Using a viscous
potential flow model, Mandal et al. (2007) demonstrated that the
rising velocity of liquid Taylor bubbles is also related to the shape
of the nose. Besides the terminal velocity, the fluid field and the
bubble shape are also of great interest of research (Campos and
Guedes de Carvalho, 1988; van Hout et al., 2002; Bugg and Saad,
2002; Nogueira et al., 2006a; Nogueira et al., 2006b).
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In cases where the suspending fluid initially flows instead of
being stagnant, the dynamics of Taylor bubbles is more complex,
while the literature is rather limited. Nicklin et al. (1962) proposed
that the terminal velocity of a Taylor bubble rising in a moving
fluid (UB) is a linear combination of the mean velocity of the co-
current (UC) and the rising velocity in the stagnant liquid (U0), i.e.

UB ¼ CUC þ U0 ¼ CUC þ a
ffiffiffiffiffiffi
gD

p
ð1Þ

where UC denotes the mean velocity of the co-current flow, and C is
a constant. It was found that C takes value around 1.2 for turbulent
flows, and for laminar it is around 2 (Nicklin et al., 1962; Collins
et al., 1978; Grace and Clift, 1979; Bendiksen, 1985). Polonsky
et al. (1999) experimentally studied the relation, and they found
that the value of C is depended on the co-current velocity. Nogueira
et al. (2006a,b) performed experiments on the detailed velocity field
around a Taylor bubble rising through vertical tubes filled with up-
ward flowing Newtonian liquids, and they demonstrated that the
wake length increases linearly with a Reynolds number based on
the superficial liquid velocity relative to the bubble. Pinto et al.
(2000) investigated the transition in the Taylor bubble velocity in
vertical upward co-currenting liquids, and they reported that the
coefficient C is a function of the Reynolds number, the Weber num-
ber, and UC/U0.

Numerical modeling serves an alternative to explore the
dynamics of Taylor bubbles in initially stagnant fluids, for example
(Mao and Dukler, 1991; Bugg et al., 1998; Ndinisa et al., 2005; Taha
and Cui, 2006; Akbar and Ghiaasiaan, 2006). For Taylor bubbles
with co-currents, Lu and Prosperetti (2009) simulated Taylor bub-
bles rising in a vertical tube filled with stagnant, upward or down-
ward flowing liquids by a finite volume method coupled with
marker points to track the interface.

The objective of this work is to systematically investigate the
co-current (including both upward and downward flows) effects
on a rising Taylor bubble. A front tracking scheme coupled with
finite difference method is employed as this scheme has been
extensively validated for the simulations for bubble rising (Mukun-
dakrishnan et al., 2007) and especially for a Taylor bubble rising in
a stagnant fluid (Kang et al., 2010). In the front tracking scheme,
the two-fluid flow (including the gas inside the bubble and the sus-
pending liquid) is solved, and thus both the velocity fields inside
and outside the bubble can be revealed. The effects of the co-cur-
rents on the terminal velocity and the overall shape of the bubble
are studied. The detailed investigations of the shape in the nose
and tail regions, the velocity inside bubble and in the thin film re-
gion, and the wall shear stresses are presented. Correlations be-
tween the bubble rising velocity and the mean velocity of the
suspending flow are obtained and compared with the published re-
sults. A correlation between the wake length and the co-current
velocity is also proposed.

2. Problem setup and numerical methods

Fig. 1 displays the computational domain and the initial bubble
shape for the simulations. The problem is assumed rotational sym-
metry (or axi-symmetry), and the axis of the symmetry is denoted
by the dash-dot-dot line. Therefore, all the simulations are per-
formed in a cylinder coordinate system (r,z). The cylindrical tube
has an inner radius of R0 = 1.6 cm and a length of 30R0, and the side
wall of the tube is denoted by the thick line. The density and vis-
cosity of the bubble are qb and lb, and qs and ls for the suspending
fluid. The two fluids are assumed incompressible and immiscible.
The gravitational force is downward. The initial bubble has a shape
of a cylinder with two hemispheres at the two ends. The radius of
the middle section is r0, which is 0.84R0, and the length of the ini-
tial bubble is 4r0. As both the upward and downward co-currents

are of the interest of study, the bottom and top of the simulation
domain can either be outlet or inlet. The velocity profile at the inlet
of the co-current is parabolic, i.e. uinlet

z ¼ UCð1� r2Þ with r being
non-dimensional radius, to mimic the fully-developed pressure-
driven Poiseuille flow in a cylindrical tube. As the suspending fluid
is moving, one extra governing non-dimensional number is intro-
duced, i.e. the velocity ratio (UC/U0). Then, the Reynolds number
ðReUB Þ and Webber number ðWeUB Þ are based on the terminal
velocity of the Taylor bubble in the moving fluid, UB.

The numerical scheme solves the Navier–Stokes equations by a
finite difference method with a projection scheme (Bell and
Marcus, 1992), and the flow is assumed to be laminar. The interface
is located by the front tracking scheme (see Tryggvason et al.
(2001) for a great review of the method and Esmaeeli and Tryggva-
son (1998, 1999, 2005) for the applications). The detail of the cur-
rent implementation of the method for bubble rising including the
validations can be found in Kang et al. (2010), Mukundakrishnan
et al. (2007), and here only a brief summary is given. In the projec-
tion approach, first, an intermediate velocity is obtained by a semi-
viscous procedure in which a one-time-step lagged pressure is
used. This intermediate velocity, of course, does not satisfy the
continuity equation. Therefore, the intermediate velocity field is
then projected onto discretely divergence-free vector fields. The
Crank–Nicholson method is employed for the time integration.
The interface (or front) moves in a trapezoidal mode by the veloc-
ity interpolated from the neighboring fixed grids. The surface ten-
sion forces which are calculated on the interface and then are
distributed to the surrounding grids using a d function (Griffith
and Peskin, 2005) in a density-weighted manner. The viscosity is
calculated by a harmonic mean method, and similar schemes can
be found in Gunsing (2004) and Prosperetti and Tryggvason
(2007). The numerical method has been extensively validated
against a number of experiments for a bubble and a Taylor bubble

Fig. 1. Sketch of a Taylor bubble (the red thick line) rising in a cylindrical tube filled
with a co-current fluid. The co-current either flows downwards or upwards with a
parabolic velocity distribution. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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