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1. Introduction

The stability of two-layer flows in planar channels and pipes has
received considerable attention in the literature experimentally,
theoretically and numerically. This is due to the central importance
of these flows to numerous engineering applications, such as the
cleaning of fast-moving consumer good plants, transportation of
crude oil in pipelines (Joseph et al., 1997), mixing of liquids using
centerline injectors, up-stream of static mixers (Cao et al., 2003),
and the removal of highly viscous or elasto-viscoplastic material
adhering to pipes by using fast-flowing water streams (Regner
et al., 2007).

The instability of two-dimensional disturbances in two-fluid
Poiseuille flows has been studied by many authors via linear stabil-
ity analyses (Yiantsios and Higgins, 1988b; Hooper and Boyd,
1983; South and Hooper, 1999; Frigaard, 2001), with some being
carried out in the long-wave limit (Yih, 1967; Yiantsios and
Higgins, 1988a; Khomami, 1990a,b), as well as experimental
techniques (Kao and Park, 1972). An extended review can be found
in (Boomkamp and Miesen, 1996). Sahu et al. (2007) studied the
linear instability of two-dimensional disturbances in a pressure-
driven two-layer channel flow, wherein a Newtonian fluid layer
overlies a layer of a Herschel–Bulkley fluid. Their results indicate
that increasing the yield stress, prior to the formation of unyielded
zones, and shear-thickening tendency are destablising. The

convective and absolute nature of two-dimensional disturbances
in a similar system is studied by Valluri et al. (2010). The stability
maps demarcating the areas of absolute and convective instabili-
ties as a function of other parameter values were presented.
Frigaard (2001) studied the two-dimensional linear stability of
two-layer Poiseuille flow of two Bingham fluids. Unlike the study
of Sahu et al. (2007), the case studied by Frigaard (2001), involves
an unyielded region between the Newtonian fluid and the yielded
part of the Bingham fluid. Interfacial waves would not develop
under such conditions; this suppression of interfacial modes then
leads to super-stable two-layer flows (Frigaard, 2001). On the other
hand, the effect of three-dimensional disturbances on the stability
of pressure-driven channel flow, has received little attention.

Squire (1933) studied the stability of viscous fluid flow between
parallel walls and found that every unstable three-dimensional
disturbance is associated with a more unstable two-dimensional
disturbance at a lower value of the Reynolds number. This result is
commonly known as ‘Squire’s theorem’ (Drazin and Reid, 1985)
and the connection between the two- and three- dimensional
disturbances is known as ‘Squire’s transformation’. For two super-
posed fluids in plane Poiseuille flow, Yiantsios and Higgins (1988a)
showed that three-dimensional disturbances are associated with
smaller Reynolds numbers, and larger capillary contributions and
density stratifications. The larger capillary contributions are
stabilising for all parameter values, as is density stratification
provided the density of the upper fluid is lower than that of the lower
one. Thus, although a Squire’s transformation can exist for all flow
parameters, a Squire’s theorem can only exist provided the Reynolds
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number has a destabilising effect. They found that in the absence of
surface tension and gravitational effects, Squire’s theorem is valid
for tr >

ffiffiffiffiffi
m
p

since the Reynolds number is destabilising; here, tr is
the thickness ratio of the two fluids and m is the viscosity ratio.
For tr <

ffiffiffiffiffi
m
p

, the Reynolds number is stabilising and Squire’s theo-
rem no longer exists. This is also true in the presence of destabilising
density stratification.

Following the remark by Yiantsios and Higgins (1988a), in the
absence of a Squire’s theorem it is necessary to perform a three-
dimensional linear stability analysis in order to determine whether
or not two-dimensional disturbances correspond to the most
dangerous ones. Sahu and Hema (2011) examined the three-
dimensional linear stability of two-layer plane Poiseuille flow,
wherein a Newtonian fluid layer overlies a layer of a Herschel–
Bulkley fluid, focussing on the range of parameters for which
Squire’s theorem does not exist. They demonstrated through a
linear stability analysis the presence of three-dimensional
instabilities. Malik and Hooper (2007) also studied the effect of
three-dimensional disturbances on two-fluid channel flow, where-
in both the fluids are Newtonian. Using an energy analysis they
showed that maximum amplification of the disturbances is due
to the ‘‘lift-up effect’’ as in case of single phase flow. They also
found that, for some parametric regime, the maximum disturbance
energy growth is associated with three-dimensional disturbances.

In this paper, a generalized linear stability analysis (Huerre and
Monkewitz, 1990; Chomaz, 2005; Schmid and Henningson, 2001)
(in which both the spatial wavenumber and temporal frequency
are complex) of three-dimensional disturbances is carried out,
which allows the demarcation of the boundaries between convec-
tively and absolutely unstable flows in the space of relevant
parameters: the Reynolds number and a viscosity ratio. To the best
of our knowledge, this type of analysis, which has been performed
previously for jets, mixing layers, wakes, boundary layers etc. for
two-dimensional disturbances, has not been carried out for
two-fluid channel flows in the context of three-dimensional
disturbances.

The rest of this paper is organised as follows. Details of the
problem formulation are provided in Section 2, and the results of
the linear stability analysis are presented in Section 3. Concluding
remarks are provided in Section 4.

2. Formulation

A pressure-driven channel flow of two immiscible Newtonian
and incompressible fluids is considered. A rectangular coordinate
system, (x,y,z), is used to model this flow (Uj,Vj,Wj), where x, y
and z denote the streamwise, spanwise and wall normal coordi-
nates, respectively, as shown in Fig. 1. Uj, Vj and Wj are the velocity
components of fluid ‘j’ in the streamwise, spanwise and wall

normal directions, respectively. The rigid and impermeable chan-
nel walls are located at z = 0 and z = H, respectively, and the sharp
interface, which separates the immiscible fluids, is at z = h0. The
height of the channel, H, and Um � Q/H are used as the length
and velocity scales, respectively, in order to nondimensionalise
the equations of motion, where Q denotes the total flow rate per
unit transverse length. The viscosity and density have been scaled
with l2 and q2, respectively, such that the viscosity ratio, m � l1/
l2, and density ratio, r � q1/q2, wherein l1 and q1, l2 and q2 are
the viscosity and the density of the lower and upper fluids, respec-
tively. The reduced dimensionless pressure Pj in fluid ‘j’ is related to
the corresponding total dimensional pressure pj through

Pj ¼
H

l2Um
pj þ qjgðz� hÞ
h i

ðj ¼ 1;2Þ; ð1Þ

where g is the gravitational acceleration. We analyse linear stability
characteristics of the base state described below.

2.1. Base state

The base state corresponds to a steady, parallel, fully-developed
flow in both the layers separated by a flat interface, i.e., Vj = Wj = 0;
Uj is only a function of z and pressure distribution (P1 = P2 = P) is
linear in x.

U1 ¼
1

2m
dP
dx

z2 þ h02
þmð1� h0Þ

mðh0 � 1Þ � h0

( )
z

" #
; ð2Þ

U2 ¼
1
2

dP
dx

z2 � 1þ h02
þmð1� h0Þ

mðh0 � 1Þ � h0

( )
ðz� 1Þ

" #
: ð3Þ

The pressure gradient, dP/dx, is obtained from the constant volu-
metric flow rate condition, i.e.,Z h0

0
U1dzþ

Z 1

h0
U2 dz ¼ 1: ð4Þ

We obtained Eqs. (2) and (3) by integrating the steady, fully-
developed dimensionless Navier–Stokes equations, imposing the
no-slip conditions at the walls and demanding continuity of
velocity and the tangential component of the stress at the interface.
Typical basic state profiles of the steady, streamwise velocity com-
ponent for h0 = 0.3 are shown in Fig. 2. These parameter values are
chosen such that they satisfy n � h0

=ð1� h0Þ <
ffiffiffiffiffi
m
p

for which there
is no Squire’s theorem (Yiantsios and Higgins, 1988a). Inspection of

Fig. 1. Schematic of a two-layer flow in a channel of height H, where h0 represents
the thickness of the lower fluid.

Fig. 2. Basic state profiles of the steady, streamwise velocity profiles for different
viscosity ratios. The height of the interface from the bottom wall, h0 = 0.3.
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