Journal of Industrial and [Engineering](http://dx.doi.org/10.1016/j.jiec.2016.07.053) Chemistry xxx (2016) xxx–xxx

Journal of Industrial and Engineering Chemistry

journal homepage: <www.elsevier.com/locate/jiec> \mathcal{N}

Estimation of thermodynamic properties of hydrogen isotopes and ² modeling of hydrogen isotope systems using Aspen Plus simulator

³ Jaehyun Noh Q1 ^a , Alyssa Marie Fulguerasa , Leah Jessica Sebastian^a , Hyeon Gon Leeb , 4 Dong Sun Kim^a, Jungho Cho^{a,*}

⁵ Pepartment of Chemical Engineering, Kongju National University, 275 Budae-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do 331-717, South Korea
^b National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu

ARTICLE INFO

Article history: Received 20 April 2016 Received in revised form 13 July 2016 Accepted 30 July 2016 Available online xxx

Keywords: Hydrogen isotopes Isotope separation system Physical property estimation Process simulation Peng–Robinson equation of state

A B S T R A C T

Physical properties of hydrogen isotopes, hydrogen (H2), hydrogen-deuterium (HD), hydrogen-tritium (HT), deuterium (D_2) , deuterium-tritium (DT), and tritium (T_2) were estimated through vapor pressure prediction, and validated by steady-state simulation of ITER isotope separation system (ISS). Peng– Robinson (PR) equation of state with Twu alpha function was selected for modelling which showed favorable prediction from the experimental vapor pressures of each hydrogen isotopes. The steady-state simulation of ITER ISS using Aspen Plus consists of four distillation columns and seven equilibrium reactors with four purified products: D_2 , T_2 , HD, and DT. Converged solution from simulation produced potential scenario for actual ITER ISS process.

ã 2016 Published by Elsevier B.V. on behalf of The Korean Society of Industrial and Engineering Chemistry.

⁶ Introduction

⁷ For the practical production of fusion energy, seven entities, ⁸ South Korea, the United States, European Union, China, Russia, ⁹ Japan, and India, have gathered for the international nuclear fusion
¹⁰ experiment as a joint development project in progress. The 10 experiment as a joint development project in progress. The 11 experimental Boardor (TEP) project 11 International Thermonuclear Experimental Reactor (ITER) project
12 **International Photoscopy of the read from plasma physics** to 12 implies about achieving the road from plasma physics to 13 acceleration of revelops from a cover in which the word "itse" also ¹³ production of nuclear fusion power, in which the word "iter" also 14 means "way" in Latin. [Fig.](#page-1-0) 1 is a conceptual diagram showing the 15 represents the conceptual other components ¹⁵ ITER tritium fuel cycle. The gas fuel with several other components
¹⁶ including tritium is fed to a tekemak's terms chamber which 16 including tritium is fed to a tokamak's torus chamber which
 17 consists of separation/purification/prequest, sustan of compo 17 consists of separation/purification/recovery system of compo-
 18 ponts and then mixed again with the emitted gas Tekamak uses ¹⁸ nents, and then mixed again with the emitted gas. Tokamak uses
¹⁹ strong magnetic field to confine plasma into a stable flow of plasma 19 strong magnetic field to confine plasma into a stable flow of plasma
20 $\frac{20}{10}$ current in a doput-shaped vacuum chamber. The tokamak torus ²⁰ current in a donut-shaped vacuum chamber. The tokamak torus $\frac{21}{\pi}$ chamber is surrounded by magnetic field coils and transformers 21 chamber is surrounded by magnetic field coils and transformers.
22 Muclear fusion is generated by injecting ass inside the vacuumed ²² Nuclear fusion is generated by injecting gas inside the vacuumed $\frac{23}{100}$ to the bight 23 torus, heating by magnetic and electric field to form high-
 24 tomparature plasma and adding microwaves to further increase ²⁴ temperature plasma, and adding microwaves to further increase
²⁵ the temperature and squeeze the plasma. Tritium which is ²⁵ the temperature and squeeze the plasma. Tritium, which is
²⁶ introduced into a torus is released combined with other gases introduced into a torus, is released combined with other gases

Q2 * Corresponding author. E-mail addresses: [jhcho@kongju.ac.kr,](mailto:jhcho@kongju.ac.kr) pronjh1217@naver.com (J. Cho). containing hydrogen isotopes from nuclear fusion reaction and 27
and form the terms 28 proliferation process. The gas mixture discharged from the torus 28
processed to the tolerand outbourt processing (TED) to separate the 29 proceeds to the tokamak exhaust processing (TEP) to separate the 29
hydrogen isotopes with other impurities while the douterium and hydrogen isotopes with other impurities, while the deuterium and
tritium are congrated by cryogenic distillation in the isotope tritium are separated by cryogenic distillation in the isotope 31
constrain cyclom (ISS). Then the constanted bydrogen isotopes 32 separation system (ISS). Then, the separated hydrogen isotopes 32
through ISS are supplied for storage and delivery system (SDS). In 33 through ISS are supplied for storage and delivery system (SDS). In 33
the water detritiation system (WDS), the remaining amount of 34 the water detritiation system (WDS), the remaining amount of 34
deuterium and tritium are recovered and qualitative-quantitative deuterium and tritium are recovered, and qualitative–quantitative 35
analysis is performed in the analysis system (ANS) In the fueling 36 analysis is performed in the analysis system (ANS). In the fueling 36
system (ES) and noutral beam injector (NPI), the functions 37 system (FS) and neutral beam injector (NBI), the functions 37
supplying the terms should be depended on the application of 38 supplying the torus should be depended on the application of 38
the gas supplied from the SDS. The gases to be fed into the puckar 39 the gas supplied from the SDS. The gases to be fed into the nuclear $\frac{39}{100}$ fusion reaction as fuel are T_2 , D_2 and DT, and the gases to be $\frac{40}{10}$
injected in order to stan the nuclear fusion reaction are No. 4 m Ho injected in order to stop the nuclear fusion reaction are Ne, Ar, He, $\frac{41}{2}$ O_2 and N_2 , and the like [\[1](#page--1-0)–5]. This research proceeds with the study 142
of the ISS process ⁴³
⁴⁴ of the ISS process.
ITER ISS is the system for purifying the desired component and

ITER ISS is the system for purifying the desired component and $\frac{44}{100}$
mosition using cryogenic distillation and the equilibrium $\frac{45}{100}$ composition using cryogenic distillation and the equilibrium 45
reaction in which gas mixture of hydrogen isotones from TFP 46 reaction in which gas mixture of hydrogen isotopes from TEP 46
and WDS are fed [6.7]. On the other hand, since cryogenic 47 and WDS are fed [\[6,7\]](#page--1-0). On the other hand, since cryogenic 47
distillation is used in the ISS there is a significant amount of 48 distillation is used in the ISS, there is a significant amount of $\frac{48}{12}$ hydrogen isotopes being liquefied, and longer retention time of 49
tritium holdup during operation is the best present. Uslium 50 tritium holdup during operation is the best process. Helium 50
refrigerator is used to aparate at low temperature of about 15, 20 $V = 51$ refrigerator is used to operate at low temperature of about $15-20$ K. 51
From TED and M/DS to ISS, the main compositions to be introduced 52 ⁵² From TEP and WDS to ISS, the main compositions to be introduced

<http://dx.doi.org/10.1016/j.jiec.2016.07.053>

1226-086X/[®] 2016 Published by Elsevier B.V. on behalf of The Korean Society of Industrial and Engineering Chemistry.

Please cite this article in press as: J. Noh, et al., Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator, J. Ind. Eng. Chem. (2016), <http://dx.doi.org/10.1016/j.jiec.2016.07.053>

2 J. Noh et al. / Journal of Industrial and Engineering Chemistry xxx (2016) xxx–xxx

Fig. 1. Block diagram of ITER fuel cycle.

53 are the 6 hydrogen isotopes: H_2 , HD, HT, D_2 , DT, and T_2 . In the ISS
54 process out of the six mixed gas D. DT and T, which are used as a 54 process, out of the six mixed gas, D_2 , DT, and T_2 , which are used as a raw material for ITER, should be purified with the desired composition. To produce the desired composition of D_1 , DT 56 compositions. To produce the desired composition of D₂, DT, 57 and T from ISS a tatal of four distillation activities as a set 57 and T_2 from ISS, a total of four distillation columns and several 58 equilibrium governs (Faultinetes) should be installed by the 58 equilibrium reactors (Equilibrator) should be installed. In the 59 ⁵⁹ equilibrium reactor, the following reversible reactions take place:
 $\frac{60}{2}$ and $\frac{1}{2}$ and $\frac{1}{2$

60 2HD \leftrightarrow H₂ + D₂, 2HT \leftrightarrow H₂ + T₂, and 2DT \leftrightarrow D₂ + T₂.
61 Table 1, adapted from Song et al. [\[8\]](#page--1-0), shows the equilibrium 62 constant of isotopes based on temperature for each equilibrium
 63 constant constally these equilibrium reactions have clow reaction 63 reaction. Generally, these equilibrium reactions have slow reaction
 64 rate at yery low temperature and fact reaction rate at ream 64 rate at very low temperature and fast reaction rate at room
 65 temperature in terms of D, and T, generation. The desired ⁶⁵ temperature in terms of D_2 and T_2 generation. The desired
⁶⁶ melecular band form can load to a reaction when the cupplied 66 molecular bond form can lead to a reaction when the supplied composition was set in the equilibrium reactor by optimizing the 67 composition was set in the equilibrium reactor by optimizing the position of the equilibrium reactor [9] 68 position of the equilibrium reactor [\[9\]](#page--1-0).
 69 FEB JSS presents 1906 a supersonic

 69 ITER ISS process uses a cryogenic distillation and catalytic reaction from temperatures 14 to 30K Catalytic reaction takes 70 reaction from temperatures 14 to 30 K. Catalytic reaction takes
 71 place in equilibrium in which the reactor should be installed in an 71 place in equilibrium in which the reactor should be installed in an 72 optimum position depending on the concentration profile of the ⁷² optimum position depending on the concentration profile of the 73 column In addition with WDS linked to the ISS process a highly 73 column. In addition, with WDS linked to the ISS process, a highly 74 complex optimization technique will be required. Therefore, in 74 complex optimization technique will be required. Therefore, in 75 crds: to desire and optimize this presess, presess simulation 75 order to design and optimize this process, process simulation
 76 chould be performed Housier, in Kerea, there are four to pens $\frac{76}{77}$ should be performed. However, in Korea, there are few to none
 $\frac{77}{77}$ examinations that have performed present simulation of the 77 organizations that have performed process simulation of the cruceons is 78 78 cryogenic distillation process for the ITER ISS. One of the reasons is
 79 because domestic technology for the ISS process is still in the 79 because domestic technology for the ISS process is still in the 80 concent establishing phase and international technology also 80 concept establishing phase and international technology also 81 field to facilitate the tracking of related data which is critically $\frac{81}{82}$ failed to facilitate the tracking of related data which is critically ⁸² low. Another reason is the lack of technology and the physical $\frac{83}{2}$ are reason in the physical distillation are reason 83 property data to perform the cryogenic distillation process 84 cimulation. In this study the process unbusied properties for simulation. In this study, the necessary physical properties for

 H_2 , HD, HT, D₂, DT, and T₂ components were obtained using the 85 equation of state which allows the simulation of the ISS process.

⁸⁷ Estimation of thermodynamic properties

⁸⁸ Estimation of fixed properties of pure components

As shown in Table 2, the physical properties of the pure
monographs by the pure properties of $\frac{1}{2}$ and $\frac{90}{2}$ component for hydrogen isotopes, such as H_2 , HD, D_2 , HT, DT and T_1 must be obtained in endea to estimate the above equilibrium 10^{91} T_2 , must be obtained in order to estimate the phase equilibrium T_2 , means time the equation of state such as Paps. Pobineen [10] 92 properties using the equation of state such as Peng–Robinson $[10]$ $[92]$
and Soave, Podlich Kwong [11]. However, from the compatibility $[93]$ and Soave–Redlich–Kwong [\[11\]](#page--1-0). However, from the compatibility 93
of chamical process simulator such as Aspen Tosh Corporation's 94 of chemical process simulator such as Aspen Tech Corporation's $\frac{94}{25}$ Aspen Plus, Invensys' PRO/II with PROVISION, etc., only few 95
properties are built-in for H₂ HD and D₂ and no properties are 96 properties are built-in for H₂, HD and D₂, and no properties are available for HT, DT, and T₂. Thus, in this study, to estimate the 97 thermodus properties of H₂ HD_D, HT₂ DT₂ and T₂ required thermodynamic properties of H_2 , HD, D_2 , HT, DT, and T_2 required 99
for the separation process, related experimental data were for the separation process, related experimental data were $\frac{99}{200}$ collected which were used for regression applyis to obtain model $\frac{100}{200}$ collected which were used for regression analysis to obtain model 100
equation parameters, and finally to estimate thermodynamic 101 equation parameters, and, finally, to estimate thermodynamic 101
neperties (Table 3) 102 properties ([Table](#page--1-0) 3). 102
The nure component properties for the six hydrogen isotopes 103

The pure component properties for the six hydrogen isotopes 103
and an comprehensive study of eventimental data available in based on comprehensive study of experimental data available in 104
literature [12, 14] are shown in Tables 2, and 4. The Gibbs free literature $[12-14]$ $[12-14]$ are shown in [Tables](#page--1-0) 3 and 4. The Gibbs free 105
concern for each of the component is presented in which the value energy for each of the component is presented in which the value 106
for pure elements H, D, and T, are defined as zero (0) while the for pure elements, H_2 , D_2 and T_2 , are defined as zero (0), while the 107
values for all the other compounds are defined by a specific value values for all the other compounds are defined by a specific value. 108
The value of Gibbs free energy of formation ΔC° for the The value of Gibbs free energy of formation, $\Delta G_{f,i}^{\circ}$, for the 110 compounds are estimated from the standard Gibbs free energy 110 change free given absorbed received and change for a given chemical reaction. With these physical property 111
unline the selection for the equilibrium reactor is serviced surface values, the calculation for the equilibrium reactor is carried out 112
113 $(Table 4).$ $(Table 4).$ $(Table 4).$

Please cite this article in press as: J. Noh, et al., Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator, J. Ind. Eng. Chem. (2016), <http://dx.doi.org/10.1016/j.jiec.2016.07.053>

Download English Version:

<https://daneshyari.com/en/article/6668783>

Download Persian Version:

<https://daneshyari.com/article/6668783>

[Daneshyari.com](https://daneshyari.com)