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The present work deals with the motion of a Taylor bubble rising through vertical oscillating pipes. The
aim is to perform a more detailed and quantitative study of this unsteady flow, still seldom addressed in
the literature. The investigation is restricted to high Reynolds numbers to understand inertia effects.
Experimental results are provided for two different configurations: (1) pipes with two different inner
diameters (9.8 mm and 20 mm) filled with water, (2) the thinner pipe (D ¼ 9:8 mmÞ filled with four
low viscous fluids. So the Bond number Bo based on the steady rise velocity varies from 13 to 57, where
the effects of surface tension can be considered. The bubble trajectory is tracked by using a high-speed
video camera. The average terminal and fluctuating velocity, as well as the phase shift with the oscillating
plate are obtained by using image processing. The main results show that for weak acceleration, the mean
velocity decreases with the relative acceleration as the fluctuating velocity increases in proportion to this
acceleration. Beyond a critical relative acceleration, the average velocity increases and the fluctuating
velocity increase seems to slow down. Additionally, comparisons are made with experimental results
of Brannock and Kubie [Brannock, D., Kubie, J., 1996. Velocity of long bubbles in oscillating vertical pipes.
Int. J. Multiphase Flow 22, 1031–1034] and numerical results of Clanet et al. [Clanet, C., Heraud, P., Searby,
G., 2004. On the motion of bubbles in vertical tubes of arbitrary cross-sections: some complements to the
Dumitrescu Taylor problem. J. Fluid Mech. 19, 359–376].

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Among two-phase flow regimes in a vertical pipe, slug flow ap-
pears in a very wide range of flowing conditions. This kind of flow
is characterized by large elongated bubbles, also called Taylor bub-
bles or gas slugs, which nearly occupy the entire cross section of
the pipe. A thin film of liquid flows between the gas interface
and the pipe wall.

Slug flows occur in several industrial applications. It is useful in
desalination industry, in heat exchangers, boilers and heat pipes in
order to improve the efficiency by increasing the mass and heat
transfer. Slug flow is also widely encountered in the oil extraction
industry where it is very undesirable. It causes serious mechanical
process and corrosion problems in oil field facilities. Thus it is essen-
tial to predict slugging characteristics so as to be able to reach a safe,
economic and efficient design in applications such as these. Thus
many researchers have been interested in Taylor bubble flow and
various investigations have been carried out on this subject. In order
to understand the hydrodynamics of such a complex flow, the first
step has been to study a single gas slug evolving in a vertical pipe.

The rise velocity of Taylor bubbles depends on the pipe diame-
ter and its inclination angle, the physical properties of gas and li-
quid phases (density, viscosity and surface tension), and the flow

rates of the two phases. White and Beardmore (1962) established
by using dimensional analysis, the main dimensionless numbers
which govern the motion of Taylor bubbles in pipes: Bond
ðBo ¼ gðqL � qGÞD

2=rÞ, Froude (Fr ¼ Ub=
ffiffiffiffiffiffi
gD

p
Þ and Morton (Mo ¼

gl4
L=qLr3Þ numbers, where D is the pipe diameter, Ub is the Taylor

bubble mean velocity, qL and qG are the liquid and gas densities, lL

is the viscosity of the liquid, r stands for the surface tension and g
is the gravity. Other dimensionless numbers could be used, e.g.,
Collins et al. (1978) used Froude number as a unique function of
Morton number and a dimensionless inverse viscosity number,
Nf , given by Nf ¼ qLg

1
2D

3
2=lL ð� ReÞ. It is known that in cylindrical

tubes of diameter D, for a Taylor bubble motion in a liquid of kine-
matic viscosity m, high Reynolds number bubbles ðRe � UbD=m� 1Þ
are characterized by:

Ub ¼ Fr
ffiffiffiffiffiffi
gD

p
ð1Þ

The first studies on the bubble rise velocity in circular cross section
pipes and in stagnant fluids, were carried out byDumitrescu (1943),
Davies and Taylor (1950). These studies were limited to the case of
bubbles moving in low viscous liquids and where the surface ten-
sion effects were considered to be negligible. According to the liter-
ature, these conditions are satisfied when Nf > 300 (negligible
viscosity regime) and Bo > 100 (negligible surface tension). In this
case, the theoretical solution for a bubble rising in a stagnant col-
umn, is given by Eq. (1) where the Froude number is constant.
The estimated Froude number by Dumitrescu (1943), Davies and
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Taylor (1950) is 0.351 and 0.328, respectively. Comparison with
experimental results of White and Beardmore (1962), Nicklin et
al. (1962), Zukoski (1966) indicates that Dumitrescu’s estimate of
the Froude number Fr ¼ Ub=

ffiffiffiffiffiffi
gD

p
is the most accurate one and

agrees well with experiment. Dumitrescu also studied the effect
of surface tension by investigating the influence of the interface cur-
vature. He observed the bubble propagation in tubes whose diame-
ter is comparable with the capillary length lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=qg

p
. His

experimental results for air bubbles in water showed that Eq. (1)
is valid only within the limit D=lc > 4

ffiffiffi
2
p

or Bo > 64. Below this lim-
it, Fr is no longer constant but decreases as the Bond number,
ðBo ¼ 2ðD=lcÞ2Þ does. The effects of surface tension were also stud-
ied by other authors. Tung and Parlange (1976), Bendiksen (1985)
investigated theoretically the influence of surface tension on bubble
motion. Both found that surface tension monotonically reduces the
rise velocity and this was in agreement with their experiments as
well as with the experiments of Zukoski (1966). The simplified re-
sult of Bendiksen given by Fabre and Line (1992) can be written as:

Fr ¼ 0:344
1� 0:96 expð�0:0165BoÞ
ð1� 0:52 expð�0:0165BoÞÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 20

Bo
1� 6:8

Bo

� �s
ð2Þ

Thus in a quiescent fluid with moderated viscosities, the velocity Ub

can be calculated from a relationship Fr ¼ f ðBoÞ. For Taylor bubbles
in co-current flow, the rise velocity can be predicted from Nicklin’s
equation (Nicklin et al., 1962) Ub ¼ Ub0 þ C0Um, where Um is the mean
velocity of liquid flow in the pipe and Ub0 is the Taylor bubble velocity
in stagnant conditions. Coefficient C0 takes value of around 1.2 when
the liquid flow is turbulent and around 2.0 when it is laminar.

van Hout et al. (2002) were one of the first ones to perform PIV
measurements in slug flow for air–water systems, for stagnant
water in the pipe. They determined separately the flow pattern
around a single gas slug and the bubble shape. In recent works, this
subject was studied for the case of Taylor bubble motion in stag-
nant newtonian and non newtonian liquids (Sousa et al., 2005,
Nogueira et al., 2006) and the bubble shape was obtained more
precisely by using the simultaneous particle image velocimetry
technique (PIV) and pulsed shadow technique (PST).

As reviewed above, several articles have been published on the
Taylor bubble motion in vertical tubes in the case of steady flow.
However, in almost all the industrial processes, the flow is unsteady,
for example when the pipe undergoes vibrations. In this condition
the steady models presented in previous works could not be vali-
dated. Unfortunately this subject has remained largely unaddressed.

Brannock and Kubie (1996) were the first to perform an experi-
mental investigation on the motion of Taylor bubbles in 2 m long
vertically oscillating vertical pipes with internal diameters of 22
and 44 mm. They were subjected to a perfect sinusoidal vertical mo-
tion with the oscillation amplitudes b of 50, 100 and 200 mm and
acceleration bx2 of 0 (stationary vertical pipe), 1, 5, 10 and
15 ms�2 with x the angular frequency. In all these cases, rise veloc-
ity decrease with the relative acceleration a ¼ bx2=g was observed.
They indicated a good agreement between the experimental data
and their semi-empirical approach. In order to predict this decrease,
Brannock and Kubie (1996) assumed that the instantaneous bubble
velocity, UbðtÞ, can be deduced from Eq. (1) by replacing g by gE

where gE is a ‘‘pseudo” effective acceleration. They proposed:
gE ¼ max½ðg þ bx2sinxtÞ;0�. This choice is not very clear and is not
based on any scientific argument. Its only interest is to have a posi-
tive quantity under the root of Eq. (1) when the relative acceleration
a becomes greater than 1. Then the average bubble velocity was cal-
culated by: �Ub ¼ ð1=TÞ

R T
0 UbðtÞdt, where T is the periodic time. Com-

paring with their experimental results, they found that the
‘‘theoretical” results underpredict the reduction in �Ub=Ub0 . Thus by
considering the bubble nose distortions which become more impor-
tant at high relative accelerations, they introduced a critical relative

acceleration ac , at which the bubble is completely broken up, in the
rise velocity expression and they proposed:

�Ub=Ub0
¼ 1� a

ac

� �n
2 1

T

Z T

0
ðmax½ð1þ a sin xtÞ;0�Þ1=2dt ð3Þ

where Ub0 is the velocity of the Taylor bubble at x ¼ 0. The critical
relative acceleration, ac , and the exponent n was found experimen-
tally to be equal to 1.7 and 0.05, respectively. Kubie (2000) also
studied experimentally the velocity of long bubbles in horizontally
oscillating vertical tubes, but this configuration is different of our
investigation. In this last case, Kubie (2000) found that the velocity
ratio increases with the relative acceleration, a.

Clanet et al. (2004) developed an analytical model in order to
analyze the propagation of Taylor bubble in an oscillating vertical
tubes. It should be noted that in their case the surface tension ef-
fects are considered to be negligible and the bubble nose is as-
sumed to be undeformable. By projection of the Euler equation
onto the interface and by assuming a potential motion along the
bubble, they obtained the following differential equation:

dUb

dt
þ k0U2

b � gð1� a sin xtÞ ¼ 0 ð4Þ

where k0 ¼ 7:66=D leading to a Fr ¼ 0:361 for steady state regimes.
Clanet et al. decomposed the velocity UbðtÞ into a mean and fluctu-
ating part: UbðtÞ ¼ �Ub þ Uf ðtÞ and used a numerical method in order
to determine �Ub. They found that the mean velocity reaches zero for
a critical reduced acceleration, ac of about 1.7 which is in good
agreement with the experimental observations of Brannock and Ku-
bie (1996).

Madani et al. (2007) carried out an experimental investigation
on the motion of a Taylor bubble moving in water under gravity
and vertical oscillating motion generated by a vibrating plate. Their
experiments were carried out for different frequencies where the
oscillation magnitude b was equal to 5 mm and 20 mm. A very
small influence of the oscillation amplitude on the bubble velocity
was observed for weak relative accelerations. The evolution of the
bubble length for different frequencies were investigated and the
small linear evolution of bubble length with the oscillating plate
was observed. The effects of quasi-steadiness were also studied
by determining Froude and Bond numbers and were found to be
more important for high frequencies.

In the present study, this work is extended for different pipe
diameters and by using other fluid–gas combinations. As referred
above, only two other researchers focused on the unsteady flow of
Taylor bubbles and they were only interested in the mean rise veloc-
ity of long bubbles. So it appeared legitimate to us to start an exper-
imental study on this topic in order to understand the complex
nature of slug flows in quasi-steady conditions. In this work, we car-
ry out an experimental investigation on the motion of a Taylor bub-
ble moving in a non viscous (low viscosity) quiescent liquid under
gravity and vertical oscillating motion generated by a vibrating
plate. The bubble motion is obtained by using high-speed video
tracking and subsequent image processing methods. The average
rise velocity, the fluctuating velocity, the phase shift with the oscil-
lating plate are measured. From these results, the effects of quasi-
steadiness are studied by defining and determining two unsteady
dimensionless numbers: Froude and Bond numbers.

2. Experimental set-up, measurement techniques and data
processing

2.1. Experimental set-up

The experimental facility consists of a mechanical system con-
taining a vertically oscillating plate and a closed column filled with
a low viscous fluid and a small quantity of gas to generate the
Taylor bubble (Fig. 1).
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