Accepted Manuscript

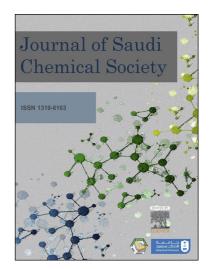
Original article

Synthesis of Mn_3O_4 nanoparticles via a facile gel formation route and study of its phase and structural transformation with distinct surface morphology upon heat treatment

A.K.M. Atique Ullah, A.K.M. Fazle Kibria, M. Akter, M.N.I. Khan, M.A. Maksud, Rumana A. Jahan, Shakhawat H. Firoz

 PII:
 \$1319-6103(17)30043-1

 DOI:
 http://dx.doi.org/10.1016/j.jscs.2017.03.008


 Reference:
 JSCS 867

To appear in: Journal of Saudi Chemical Society

Received Date:21 January 2017Revised Date:27 March 2017Accepted Date:28 March 2017

Please cite this article as: K.M.A. Ullah, K.M.F. Kibria, M. Akter, M.N.I. Khan, M.A. Maksud, R.A. Jahan, S.H. Firoz, Synthesis of Mn_3O_4 nanoparticles via a facile gel formation route and study of its phase and structural transformation with distinct surface morphology upon heat treatment, *Journal of Saudi Chemical Society* (2017), doi: http://dx.doi.org/10.1016/j.jscs.2017.03.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis of Mn_3O_4 nanoparticles via a facile gel formation route and study of its phase and structural transformation with distinct surface morphology upon heat treatment

A. K. M. Atique Ullah^{1,2*}, A. K. M. Fazle Kibria³, M. Akter⁴, M. N. I. Khan⁵, M. A. Maksud², Rumana A. Jahan⁶ and Shakhawat H. Firoz^{1*}

¹Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh
 ²Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
 ³Nuclear Safety, Security and Safeguards Division, Bangladesh Atomic Energy Commission, Dhaka-1207, Bangladesh
 ⁴Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
 ⁵Materials Science Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
 ⁶Center for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
 ^{*}Corresponding author: shfiroz@chem.buet.ac.bd (S.H. Firoz); atique.chem@gmail.com (A.K.M.A, Ullah)

Abstract

Mn₃O₄ nanoparticles (NPs) were synthesized from the reduction of KMnO₄ with glycerol at 80 °C in aqueous media via a gel formation route. In order to investigate the thermal stability and phase transformation, Mn₃O₄ NPs were subjected to heat treatment from 200 °C to 700 °C. The formation of different MnO_x species observed by X-ray diffraction (XRD) measurements showed temperature dependent phase transformation occurring during the heat treatment process. XRD patterns showed that Mn₃O₄ NPs were formed at a temperature of 80 °C and two new phases Mn₅O₈ and Mn₂O₃ were appeared at 350 °C and 700 °C respectively. The three different oxides having their distinct surface morphologies *viz.*, spherical, rod and cube shape respectively, were observed. Detailed morphological and structural investigations using Field Emission Scanning Electron Microscopy (FESEM), XRD, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) revealed the temperature dependent phases, crystal structures, lattice constants, particle sizes and surface morphologies of the MnO_x species.

Keywords: Tetragonal Mn₃O₄, monoclinic Mn₅O₈, cubic Mn₂O₃, structural transition, nanorod.

1. Introduction

Manganese (Mn) oxides have been considered as promising materials due to their wide range of potential technological applications such as catalysts, electrochemical materials, ionexchanging materials, high-density magnetic storage media, etc. [1-4]. They have also stimulated a special interest due to their high reduction potential with unique oxidative properties. For instance, it has been reported that Mn-oxides can efficiently oxidize many Download English Version:

https://daneshyari.com/en/article/6670068

Download Persian Version:

https://daneshyari.com/article/6670068

Daneshyari.com