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a b s t r a c t 

The purpose of the paper is to compare two successful families of stochastic model for the prediction of 

inertial particles dispersion in a turbulent channel flow. Both models are based on the Langevin equa- 

tion; nevertheless, they were developed following different paths. The first model considered is named 

“Drift Correction model (DCM)”, and the second one is the “Generalized Langevin Model (GLM)”. To ex- 

amine the capabilities of both models, a comparison of the results predicted by the DCM- and GLM-type 

dispersion models with those extracted from a Direct Numerical Simulation (DNS) is conducted. In the 

limit of vanishing particle inertia, both models can accurately predict second-order statistics. It is also 

noticed, as not expected, that they are very similar when they are written in the same functional form. 

The comparison has also been conducted with DNS data of a particle-laden channel flow. The comparison 

of particle statistics (such as concentration, mean and rms particle velocity, third-order particle velocity 

correlations) shows that both stochastic models give very satisfactory results up to second-order statis- 

tics. The DCM- and GLM-type dispersion models studied can capture the main physical mechanisms that 

govern particle-laden turbulent channel flows. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

From physical observation of Brownian motion ( Brown, 1828 ) 

up to the first mathematical object (Kiyoshi Itô), 146 years have 

been necessary to obtain a mathematical object of practical use, 

i.e. a Markov diffusion stochastic process, X ( t ), which verifies the 

following stochastic differential equation (SDE): 

d X i (t) = A i (X (t ) , t )d t + B i j (X (t ) , t )d W j (t ) , (1) 

where A i and B ij are the drift and diffusion coefficients, respec- 

tively. The first term on the right-hand side is called “drift term”, 

and the second is the “diffusion term” which is a rapidly vary- 

ing component. d W j are the increments of a vector-valued Wiener 

process with independent components. These increments are non- 

differentiable and normally distributed with zero mean and co- 

variance 〈 d W i d W j 〉 = d t δi j . This SDE is a powerful tool in science, 

mathematics, economics and finance and is used for modeling var- 

ious processes in the physical world. Examples are stock market 
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evolution, molecular dynamics or turbulence modeling for unladen 

and laden flows. 

To introduce the use of this approach for dispersed two-phase 

flows, we first consider the description of the Brownian motion 

of a particle in a fluid at rest using a diffusion process such as 

Eq. (1) . The one-dimensional particle motion can be described by 

the following set of equations: ⎧ ⎪ ⎨ ⎪ ⎩ 

d x p = v p d t, 

d v p = −v p 
τ

d t + 

( 

2 

〈
v p 2 

〉
τ

) 

1 
2 

d W, 
(2) 

where x p ( t ) and v p ( t ) are the particle location and velocity, the 

time τ is the local decorrelation timescale of v p ( t ). In the func- 

tional form of the SDE used to model the time increment of the 

particle velocity, a linear function of particle velocity for the drift 

term A = −v p (t) τ−1 is stated and the diffusion term is defined as 

a function of the particle velocity variance as B 2 = 2 〈 v p 2 〉 τ−1 . This 

type of diffusion process ( Eq. (2) ) has progressively been used over 

the years to develop simple model of the motion of fluid elements 

in homogeneous isotropic turbulence, and more complicated ones 

that take turbulence anisotropy and inhomogeneity into account. 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.02.006 

0301-9322/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmultiphaseflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2016.02.006&domain=pdf
mailto:anne.taniere@univ-lorraine.fr
mailto:boris.arcen@univ-lorraine.fr
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.02.006


A. Tanière, B. Arcen / International Journal of Multiphase Flow 82 (2016) 106–118 107 

The same functional form as Eq. (2) is applied; however, the pa- 

rameters (drift and diffusion) have to be re-interpreted. For in- 

stance, in homogeneous and stationnary turbulence with a zero 

mean fluid velocity, the local decorrelation time scale τ is iden- 

tified to be the velocity Lagrangian time scale T L . Therefore, the 

Langevin-type equation used to model the instantaneous fluid ve- 

locity ( u i ) increments for such a turbulent flow can be written as 

(Durbin, 1980a, 1980b; Sawford, 1984, 1985) : 

d u i = −u i 

τ
d t + 

(
2 〈 u 

′ 
i 

2 〉 
τ

) 1 
2 

d W, (3) 

where τ = T L , and u ′ 
i 

is the fluctuating part of the fluid veloc- 

ity. The input parameters for the above Langevin model are thus 

the variance ( 〈 u ′ 
i 

2 〉 ) of the velocity and the Lagrangian integral 

timescale. Since the 1980s, it has been shown that the direct 

use of Eq. (3) to predict the diffusion of fluid particles in non- 

homogenous turbulent flows is erroneous. Such a model does not 

give realistic results since particle concentration tends to increase 

in regions with low velocity variance in violation with the second 

law of thermodynamics (spurious drift effect, cf. Pope, 1987 ). To 

fill this gap, two kinds of Langevin equations which are both based 

on Eq. (3) were proposed. Wilson et al. (1981) and Legg and Rau- 

pach (1982) introduced directly a corrective term in the stochas- 

tic equation in order to avoid the spurious drift effect. As noted 

by Rodean (1994) , both models used physical reasoning, but the 

corrective terms are ad hoc addition to the Langevin equation. We 

name this group of models “Drift correction models (DCM)”. We 

gather the models by Wilson et al. (1981) and Legg and Raupach 

(1982) in the same group but it has to be kept in mind that they 

are based on different formulations of the Langevin equation. A 

normalized formulation of the Langevin equation was proposed by 

Wilson et al. (1981) in opposite to that done by Legg and Rau- 

pach (1982) . For instance, reduced to the wall-normal direction, y , 

in a boundary layer (where the mean wall-normal velocity is sup- 

posed to be equal to zero), the normalized formulation proposed 

by Wilson et al. (1981) is: 

d 

( v 
σv 

)
= − v 

σv 

dt 

τ
+ 

(
2 

τ

) 1 
2 

d W + 

dσv 

dy 
d t, (4) 

where σv 2 = 〈 v ′ 2 〉 and the last term of this equation is the correc- 

tion term. From simple mathematical manipulations, Eq. (4) can be 

written as: 

d v = − v 
τ

d t + σv 

(
2 

τ

) 1 
2 

d W + σv 

[( v 
σv 

)2 

+ 1 

]
dσv 

dy 
d t. (5) 

Such a functional formulation can be compared to that proposed 

by Legg and Raupach (1982) : 

d v = − v 
τ

d t + σv 

(
2 

τ

) 1 
2 

d W + 

dσ 2 
v 

dy 
d t. (6) 

We observed that for a weakly turbulent flow v σ−1 
v → 1 , Eq. (5) 

tends toward Eq. (6) . Although the functional form of these two 

terms are different, they have the same physical meaning. They 

represent a mean force due to the action of the mean pressure 

gradient on fluid particles. To summarize the scientific road map 

before 1983, the extension to non-homogeneous turbulence was 

carried out by taking the space dependence of parameters τ and 

〈 u ′ 
i 

2 〉 into consideration, and by correcting the model to avoid un- 

physical effects. 

There has been a real advance in the stochastic modeling of 

turbulent fluid dispersion for inhomogeneous flows from 1983. 

We owe it to the seminal works of Pope (1983, 1985, 1987) and 

Thomson (1984, 1987) who have raised the issue of the consistency 

that may exist between the velocity probability density function 

(PDF) of tracer particles (noted P ), tracked through the use of a 

Langevin-type model, and the velocity probability density function 

of the flow (noted P f ). Thomson (1987) puts forward the famous 

well-mixed condition (WMC) that must be met by a Langevin 

equation to model the dispersion of tracer particles in a turbu- 

lent flow in order to ensure the consistency with the flow. This 

condition states that trace material initially well mixed in a fluid 

must remains so. In other words, it means that the joint proba- 

bility distribution of position and velocity of tracer particles will 

remain the same as that of the fluid particles. Under this condi- 

tion, fluid particles and tracers must have the same velocity mo- 

ments, position moments, and joint moments, which characterizes 

the consistency. In other terms, it strictly means that the probabil- 

ity density function of tracer particles, P , is equal to the probability 

density function P f of the fluid particles. The Fokker-Planck equa- 

tion is then satisfied by P (noted g a in his paper), and the drift pa- 

rameter of the Langevin equation can be determined to satisfy the 

WMC. However, the main drawback is that this is possible only if 

the form of the velocity PDF is known beforehand. 

Pope (1987) is rather critical about this well-mixed condition. 

The same year as the famous paper of Thomson, Pope publishes 

an article “Consistency conditions for random-walk models of tur- 

bulent flows” ( Pope, 1987 ) which is clearly a response to the arti- 

cle of Thomson : “My view was (and is) that a minimal requirement 

of a stochastic model is that it be consistent with the mean momen- 

tum equation. How to make models consistent was well known in the 

PDF literature in the 1980s, i.e., by incorporating mean pressure and 

Reynolds stress gradients correctly. A model that is thus consistent au- 

tomatically satisfies the “well mixed condition”. ”(Pope, Personal com- 

munication, 2009). 

Pope proposed the following functional form of the Langevin- 

type model for the instantaneous fluid velocity increment, 

d u i = 

[
− 1 

ρ

∂ 〈 p 〉 
∂x i 

+ ν∇ 

2 〈 u i 〉 
]

d t + A i d t + B i j d W j , (7) 

where p ( x, t ) is the pressure, ρ is fluid density, and ν represents 

the fluid kinematic viscosity. The drift term is linear and equal 

to A i = −G i j [ u j −
〈
u j 

〉
] , where G ij has an inverse time dimension. It 

can be noted that the mean pressure gradient appears naturally in 

the stochastic model. In Pope’s sense, WMC is satisfied as soon as 

the calculated mean velocity from the Langevin equation satisfies 

the continuity equation. This, in turn, requires a correct introduc- 

tion of the mean pressure gradient in the Langevin equation. Pope 

(1987, 2002) also provided an important algebraic relation between 

the drift and diffusion terms which ensures the consistency be- 

tween the Langevin-type model and second order Eulerian statis- 

tics of the turbulent flow. Pope gives the following relation for any 

turbulence: 

G jk 〈 u 

′ 
i u 

′ 
k 〉 + G ik 〈 u 

′ 
j u 

′ 
k 〉 + B ik B jk = + ν

∂ 2 

∂ x k ∂ x k 
〈 u 

′ 
i u 

′ 
j 〉 

− 1 

ρ

[〈
u 

′ 
i 

∂ p ′ 
∂x j 

〉
+ 

〈
u 

′ 
j 

∂ p ′ 
∂x i 

〉]
− 2 ν

〈
∂u 

′ 
i 

∂x k 

∂u 

′ 
j 

∂x k 

〉
. (8) 

From this last relation, a compatibility between the Langevin-type 

model and second-moment closure models can be provided. This 

group of models is named Generalized Langevin Models, noted 

GLM where the drift and diffusion parameters have to be specified. 

Note that no assumption is made about the form of the velocity 

distribution in opposite to Thomson’s approach. 

Thanks to these pioneering works, the connection between 

Langevin equation and turbulent flow has been made for fluid 

particle diffusion in non-homogeneous turbulent flows. From 

a literature review on inertial particle turbulent dispersion, it is 

clear that the models for the time increment of the fluid veloc- 

ity along solid particle trajectory were derived from the models 
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