Accepted Manuscript

Title: Foaming of Polymers with Supercritical Fluids and Perspectives on the Current Knowledge Gaps and Challenges

Authors: Ernesto Di Maio, Erdogan Kiran

PII:	S0896-8446(17)30759-3
DOI:	https://doi.org/10.1016/j.supflu.2017.11.013
Reference:	SUPFLU 4103
To appear in:	J. of Supercritical Fluids
Received date:	17-10-2017
Revised date:	15-11-2017
Accepted date:	15-11-2017

Please cite this article as: Ernesto Di Maio, Erdogan Kiran, Foaming of Polymers with Supercritical Fluids and Perspectives on the Current Knowledge Gaps and Challenges, The Journal of Supercritical Fluids https://doi.org/10.1016/j.supflu.2017.11.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Foaming of Polymers with Supercritical Fluids and Perspectives on the Current Knowledge Gaps and Challenges

Ernesto Di Maio¹* and Erdogan Kiran²*

¹Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Naples, Italy ²Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA

Graphical Abstract

		3 3	
Nucleation Gro T, ΔT P, ΔP	CO ₂ diffusio Polymer typ	ment Rupture	
Polymer type CO ₂ sorption/ desorption Additives Interfacial tension, Y	T, and (T-T _g T, and (T-T _c Viscosity / I Dynamics) Modulus	Amorphous polymers Semi-crystalline polymers Low Tg- Rubbers Copolymers Thermosetting Polymers Plonds
Contact angle, O	F	Design for polymer systems	Blends Thin Films
Instrumentation and Techniques Fundamental Data Dynamics	$d \longrightarrow [r]{r}$	Design for target norphologies	Closed cells Open cells Gradient cells
Modeling		Design for process echnologies	Extrusion Injection Tandem /Batch

Highlights

- Current state of polymer foaming with supercritical carbon dioxide
- Foaming of rubbers, copolymers, blends, thermosetting polymers
- Challenges in assessment of thermal transitions and rheological properties of polymers in CO2
- Challenges in modeling of foaming, scale up and processing

Abstract

In this paper, we examine the state of the art of the physical foaming of polymers with supercritical fluids with a primary focus on carbon dioxide. We provide a critical analysis of the current research pathways and the main scientific open questions. We discuss the knowledge gaps along with technological challenges for further advances. Perspectives on foaming of amorphous and semi crystalline polymers, polymer blends, copolymers, and thermosetting polymers are presented. Challenges pertaining to improved understanding of nucleation phenomena, limitations on modeling and processing methodologies are discussed.

Download English Version:

https://daneshyari.com/en/article/6670449

Download Persian Version:

https://daneshyari.com/article/6670449

Daneshyari.com