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a b s t r a c t 

Code verification is the process of ensuring, to the extent possible, that there are no algorithm deficien- 

cies and coding mistakes (bugs) in a scientific computing simulation. Order of accuracy testing using the 

Method of Manufactured Solutions (MMS) is a rigorous technique that is employed here for code veri- 

fication of the main components of an open-source, multiphase flow code – MFIX. Code verification is 

performed here on 2D and 3D, uniform and stretched meshes for incompressible, steady and unsteady, 

single-phase and two-phase flows using the two-fluid model of MFIX. Currently, the algebraic gas-solid 

exchange terms are neglected as these can be verified via techniques such as unit-testing. The no-slip 

wall, free-slip wall, and pressure outflow boundary conditions are verified. Temporal orders of accuracy 

for first-order and second-order time-marching schemes during unsteady simulations are also assessed. 

The presence of a modified SIMPLE-based algorithm in the code requires the velocity field to be diver- 

gence free in case of the single-phase incompressible model. Similarly, the volume fraction weighted 

velocity field must be divergence-free for the two-phase incompressible model. A newly-developed curl- 

based manufactured solution is used to generate manufactured solutions that satisfy the divergence-free 

constraint during the verification of the single-phase and two-phase incompressible governing equations. 

Manufactured solutions with constraints due to boundary conditions as well as due to divergence-free 

flow are derived in order to verify the boundary conditions. 

© 2015 Elsevier Ltd. All rights reserved. 

Introduction 

With increased use of computational tools for engineering sim- 

ulations of complex physical systems, it becomes important to 

perform verification and validation studies for various aspects of 

a computational simulation. For a Computational Fluid Dynamics 

(CFD) simulation, verification and validation activities are useful in 

assessing the correctness of the code, quantifying the numerical 

accuracy of the simulation, and determining the applicability of the 

selected mathematical model. Verification deals with the mathe- 

matics of the simulation and involves assessing the correctness of 

the computer code and numerical algorithms as well as the accu- 
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racy of the numerical solution. Validation deals with the physics of 

the model and assesses whether the selected mathematical model 

satisfactorily predicts the physics of interest. 

Verification in scientific computing can be categorized into code 

verification and solution verification. Code verification is the pro- 

cess of examining whether or not there are coding mistakes (bugs) 

in the computer code and inconsistencies in the algorithm. Solu- 

tion verification is the process of identifying and estimating differ- 

ent forms of errors present in numerical simulations: discretiza- 

tion error, iterative convergence error, and round-off error. The 

different criteria for assessing code verification are: expert judg- 

ment, error quantification, consistency/convergence, and order of 

accuracy ( Roy, 2005 ). Out of these, the order of accuracy test is 

the recommended acceptance test for rigorous code verification 

( Knupp and Salari, 2003; Roy, 2005; Oberkampf and Roy, 2010 ). 

Order of accuracy test requires the evaluation of discretization 

error on multiple grid levels. Discretization error is defined as 

the difference between the numerical solution to the discretized 

equations and the exact solution to the partial differential (or in- 
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tegral) equations. Evaluation of discretization error requires the 

knowledge of the exact solution for the governing equations which 

is certainly not known for problems of practical interest. In this 

scenario, a technique called the Method of Manufactured Solutions 

(MMS) ( Roache and Steinberg, 1984 ) can be used where a solu- 

tion is “manufactured” and used as an exact solution. This manu- 

factured solution exactly solves the modified governing equations 

obtained by adding certain source terms (or forcing functions) to 

the original governing equations; the source terms are obtained by 

substituting the manufactured solution into the original governing 

equations. MMS is based upon the philosophy that code verifica- 

tion deals with the mathematics of the problem and hence arbi- 

trary functions (with certain requirements as discussed later) can 

be selected as exact solutions. The books by Roache (2009) , Knupp 

and Salari (2003) , and Oberkampf and Roy (2010) provide a com- 

prehensive discussion of code verification, MMS, and order of ac- 

curacy tests. 

CFD simulations of fluid-solids multiphase systems can be cat- 

egorized into two basic types: (1) continuum approaches, and 

(2) Lagrangian–Eulerian approaches. In a continuum approach, 

which is also referred to as the Eulerian–Eulerian method or the 

Two-Fluid Method (TFM), the different phases are mathematically 

described as interpenetrating continua and the governing equa- 

tions for mass, momentum, and energy are obtained by averaging 

quantities over a control volume. The interaction between different 

phases is modeled using various sub-models commonly referred to 

as constitutive relations or closure models. The constitutive rela- 

tions can be used to formulate interphase exchange terms describ- 

ing various physical interactions such as momentum transfer and 

heat transfer between fluids and solid, or solid and solid phases 

(e.g., see Lun et al., 1984; Gidaspow, 1994; Oliveira and Issa, 1994 

for discussion on modeling of interphase exchange terms). Spe- 

cial constitutive relations (such as interphase drag models, solid- 

stress models) are needed for practical problems of interest and 

are developed based upon experiments, or theoretical modeling, or 

first-principles based numerical simulations (such as direct numer- 

ical simulations, (e.g. Tenneti et al., 2011 )). Although assessment 

and improvement of multiphase constitutive models are important 

processes in multiphase flow dynamics, they are not the main fo- 

cus of the current work. Methods where the carrier (or surround- 

ing) phase is treated as a continuum and the dispersed phase is 

treated as discrete entities (i.e., particles or parcels of particles) are 

called Lagrangian–Eulerian methods or continuum discrete meth- 

ods. The code verification of Lagrangian–Eulerian methods is not 

directly addressed in the current study. However, the methodology 

presented here is useful for verification of a continuum discrete 

multiphase model if the carrier-phase equations employ an Eule- 

rian framework. 

Previous work 

Code verification of multiphase flows is not as common in the 

literature as that for single-phase flows. This is due to the pres- 

ence of approximately twice as many governing equations in mul- 

tiphase flows compared to single-phase flows, complex interphase 

interaction terms, and several constitutive relations which make it 

difficult to obtain manufactured solutions or simple exact solutions 

for these equations. Grace and Taghipour (2004) discussed the im- 

portance of verification and validation activities for CFD models as 

applied to fluidized beds and other dense multiphase flow sys- 

tems. In addition, they correctly concluded from a survey of ar- 

ticles claiming “verification” or “validation” for numerical models 

simulating fluidized beds that these terms have often been used 

inconsistently with their accepted terminology. 

There have been some MMS-based multiphase code verifica- 

tion studies in a multi-material context. “Multiphase” in this sense 

refers to the presence of materials in the domain with different 

physical properties thus resulting in solution discontinuities at the 

material interface. Roache et al. (1990) used MMS to verify a finite- 

difference ground flow code with discontinuous conductivities in 

the domain by selecting the manufactured solutions such that they 

explicitly satisfy the geological boundary conditions. Crockett et al. 

(2011) applied MMS to verify a multi-material heat equation solver 

that uses a Cartesian cut-cell/embedded boundary method to rep- 

resent the interface between the materials. In works by Roache 

et al. (1990) and Crockett et al. (2011) , the interface locations are 

considered to be fixed and known a priori. Brady et al. (2012) pre- 

sented a way to apply MMS to the finite volume multiphase code 

OSM which is a structured, Cartesian grid code for solving the heat 

equation. Manufactured solutions were generated using Heaviside 

and Dirac-delta functions to include the presence of moving in- 

terfaces in the domain for a typical immiscible two-phase system. 

They concluded that with such a discontinuity in material proper- 

ties, the order of accuracy must reduce to first order for a second 

or higher order discretization scheme. This conclusion is also sup- 

ported by Banks et al. (2008) who showed that the formally sec- 

ond order accuracy of the discrete system reduces to first order in 

the presence of nonlinear discontinuities and to non-integer values 

below one for linear discontinuities. 

Shunn et al. (2012) used MMS to verify an unstructured variable 

density flow-solver for a miscible two-fluid system with manufac- 

tured solutions reflective of the physical behavior common to com- 

bustion problems such as convective propagation of density fronts 

and mixing of species through diffusion. Physically-realistic manu- 

factured solutions for incompressible, single-phase flows were also 

proposed by Eça et al. (2007, 2012) for code verification of tur- 

bulent, wall-bounded flows. Vedovoto et al. (2011) performed a 

MMS-based code verification study of a pressure-based finite vol- 

ume numerical scheme suited to variable density, single-phase 

flows generally encountered in combustion applications. In their 

work, the authors selected a manufactured solution mimicking the 

propagation of a corrugated flame front separating heavy from 

light gases. In all these studies, the manufactured solutions pro- 

posed satisfied the necessary criteria such as divergence-free ve- 

locity field, wall boundary conditions, or consistency with em- 

ployed turbulence functions. There are some advantages in using 

such physically-realistic manufactured solutions in cases such as 

turbulence model verification ( Eça et al., 2012 ) where the function 

and roles of different terms change based upon the nature of the 

solution. However, the selected manufactured solution should not 

just be realistic but also exhibit enough variations to ensure that 

all terms in the governing equations are exercised during the veri- 

fication test ( Pelletier and Roache, 20 0 0; Pelletier, 2010 ). 

Current work 

The focus of current work is code verification of the discretized 

terms present in the two-fluid model governing equations. We use 

manufactured solutions that are mathematically general functions 

consisting of sinusoidal terms. This selection of manufactured so- 

lutions ensures a rigorous verification of all the discretized terms 

of the governing equations. The algorithm implemented in the 

code being investigated (i.e., MFIX, version 2014-1 ( National Energy 

Technology Laboratory, 2014 )) requires that the volume-fraction 

weighted velocity field be divergence-free for the selected man- 

ufactured solutions. We incorporate this constraint in the current 

work by introducing a novel, curl-based method to derive man- 

ufactured solution for code verification of incompressible flows. 

We also verify three of the most commonly used boundary condi- 

tions, i.e., no-slip wall, free-slip wall, and pressure outflow. While 

verifying these boundary conditions, we derive the manufactured 

solutions to satisfy the divergence-free velocity field constraint as 
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