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a b s t r a c t 

This note examines the modeling of non-convective fluxes (e.g., stress, heat flux and others) as they ap- 

pear in the general, unclosed form of the volume-averaged equations of multiphase flows. By appealing to 

the difference between slowly and rapidly varying quantities, it is shown that the natural closure of these 

terms leads to the use of a single, slowly-varying combined average flux, common to both phases, plus 

rapidly-varying local contributions for each phase. The result is general and only rests on the hypothesis 

that the spatial variation of the combined average flux is adequately described by a linear function of 

position within the averaging volume. No further hypotheses on the nature of the flow (e.g., about spe- 

cific flow regimes) prove necessary. The result agrees with earlier ones obtained by ensemble averaging, 

is illustrated with the example of disperse flows and discussed in the light of some earlier and current 

literature. A very concise derivation of the general averaged balance equation is also given. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction 

Volume averaging is a standard method for the derivation of av- 

eraged equations of balance for the modeling of multiphase flows 

(see e.g. Nigmatulin et al., 1996; Whitaker, 1999; Prosperetti and 

Tryggvason, 2009; Ishii and Ibiki, 2011 ). While the formal applica- 

tion of the method is relatively straightforward, the interpretation 

of the resulting equations is subtle. This is a crucial point as, in 

the absence of physical transparency, it becomes harder to develop 

physically relevant closures. 

The specific aspect on which we focus in this note is the mod- 

eling of non-convective fluxes (e.g. stress, heat flux, diffusive flux) 

in the averaged balance equations. The basis of the approach is 

the recognition that, in a spatially non-homogeneous flow, simul- 

taneously with the slow spatial dependence of the macroscopic 

averaged quantities, there is a faster, local spatial dependence of 

the microscopic fields. A procedure which takes into consideration 

this multi-scale nature of the actual situation results in a physi- 

cally transparent form of the averaged equations ( Section 3 ) which, 

in turn, helps to close the equations as we show with the ex- 

ample of a disperse flow in Section 4 . Section 5 provides a dis- 

cussion of the results in the context of the existing literature. 

Section 2 contains a very synthetic (“efficient”) derivation of the 
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volume-averaged equations in the standard form in which they are 

usually presented. 

2. The general averaged balance law 

We consider for simplicity a general system consisting of two 

phases, denoted by indices 1 and 2, although extension of the 

procedure to the more general case of three or more phases is 

straightforward. 

We attach to each point x in space an averaging volume V ( x ) 

of fixed shape and orientation; V j ( x , t ), with j = 1 or 2, denotes 

the (generally time-dependent) part of V occupied by the j th phase 

so that V = V 1 + V 2 . The surface S of V is also decomposed in the 

same way, S = S 1 + S 2 , with S j the portion of S occupied by the 

j th phase (see Fig. 1 ). Inside V the two phases are separated by 

an interface S i , possibly consisting of disjoint parts as, e.g., in the 

case of droplets suspended in a continuous phase. It is important 

to keep in mind that the volume occupied by the j th phase inside 

the averaging volume is bounded by S j + S i which, therefore, is a 

closed surface. 

The volume average of a generic quantity q j of arbitrary tenso- 

rial order belonging to the j th phase is defined as 

〈 q j 〉 (x , t) = 

1 

V j (x , t) 

∫ 
V j (x ,t) 

q j ( ξ, t) d 3 ξ , (1) 

where x is the position of the averaging volume. Upon using the 

(generalized) Reynolds transport theorem we have 

∂ 

∂t 

(
V j 〈 q j 〉 

)
= 

∫ 
V j 

∂q j 

∂t 
d 3 ξ + 

∮ 
S j + S i 

q j v · n j dS , (2) 
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Fig. 1. Averaging volume in a two-phase system. The surface of the averaging vol- 

ume, S = S 1 + S 2 , consists of a portion S 1 in contact with phase 1 (continuous thick 

line) and a portion S 2 in contact with phase 2 (dashed thick line). Inside the av- 

eraging volume the two phases are separated by an interface S i (thin lines) which 

may consist of disjoint parts as in this figure. 

Fig. 2. The unit normals are defined to be directed out of the corresponding phase. 

where v is the local velocity of the integration surface and n j is the 

unit normal directed out of the j th phase ( Fig. 2 ). Since V is fixed, 

v = 0 on S j and we are left with 

∂ 

∂t 

(
V j 〈 q j 〉 

)
= 

∫ 
V j 

∂q j 

∂t 
d 3 ξ + 

∫ 
S i 

q j v i · n j dS i , (3) 

where v i is the velocity of the interface contained within V . We 

assume that the quantity q j satisfies a general balance equation of 

the form 

∂q j 

∂t 
= −∇ · (u j q j ) + ∇ · φ j + θ j , (4) 

where u j is the j th phase velocity, φj the non-convective flux of 

q j and θ j the volume source of q j . Upon substituting into the first 

term in the right-hand side of (3) we find 

∂ 

∂t 

(
V j 〈 q j 〉 

)
= 

∫ 
V j 

[
−∇ · (u j q j − φ j ) + θ j 

]
d 3 ξ + 

∮ 
S i 

q j v i · n j dS i , 

(5) 

or, upon using the divergence theorem, 

∂ 

∂t 

(
V j 〈 q j 〉 

)
+ 

∫ 
S j 

q j u j · n j dS j = 

∫ 
S j 

φ j · n j dS j 

+ 

∫ 
S i 

[
−q j (u j − v i ) + φ j 

]
· n j dS i + 

∫ 
V j 

θ j d 
3 ξ . (6) 

Here we have separated the surface integrals over the interface (in 

the right-hand side) from those over the surface of the averaging 

volume (in the left-hand side). 

Now we use the exact, purely geometric theorem (see e.g., Gray 

and Lee, 1977; Prosperetti and Tryggvason, 2009 ) ∫ 
S j 

φ j · n j dS j = ∇ ·
∫ 

V j 

φ j d 
3 ξ = ∇ ·

(
V j 〈 φ j 〉 

)
, (7) 

(actually valid for any vector or higher-order tensor) to rewrite this 

result as 

∂ 

∂t 

(
V j 〈 q j 〉 

)
+ ∇ ·

(
V j 〈 q j u j 〉 

)
= ∇ ·

(
V j 〈 φ j 〉 

)
+ 

∫ 
S i 

[
−q j (u j − v i ) + φ j 

]
· n j dS i + V j 〈 θ j 〉 . (8) 

Upon division by V , assumed to be independent of x as already 

stated, and upon introduction of the volume fraction αj of the j - 

phase defined by 

α j = 

V j 

V 

, (9) 

we find the general averaged balance law 

∂ 

∂t 

(
α j 〈 q j 〉 

)
+ ∇ ·

(
α j 〈 q j u j 〉 

)
= ∇ ·

(
α j 〈 φ j 〉 

)
+ 

1 

V 

∫ 
S i 

[
−q j (u j − v i ) + φ j 

]
· n j dS i + α j 〈 θ j 〉 . (10) 

3. Separation of scales 

While (10) is formally exact, its physical transparency can be 

enhanced as we now show. We focus on the terms containing the 

non-convective flux φj in (8) , namely 

� j ≡ ∇ ·
(
V j 〈 φ j 〉 

)
+ 

∫ 
S i 

φ j · n j dS i . (11) 

We show the development explicitly for j = 1 ; the results for j = 2 

can be recovered by simply interchanging the indices 1 and 2. 

Let us define 

φ = α1 〈 φ1 〉 + α2 〈 φ2 〉 . (12) 

By its definition, this quantity captures the large-scale structure of 

the φ field and may be expected to be slowly varying over the 

scale of the averaging volume. Upon multiplying by V (assumed 

independent of position) and taking the divergence we have 

V ∇ · φ = ∇ · (V 1 〈 φ1 〉 ) + ∇ · (V 2 〈 φ2 〉 ) . (13) 

This relation permits us to re-write (11) with j = 1 as 

�1 = V ∇ · φ − ∇ · (V 2 〈 φ2 〉 ) + 

∫ 
S i 

φ1 · n 1 dS i . (14) 

On the phase interface S i the conservation law of the generic quan- 

tity q j imposes a relation between φ1 and φ2 of the general form 

(
φ1 − φ2 

)
· n 1 = γ , (15) 

where γ is a surface source term. For example, when φ is the 

stress, γ would be a vector accounting for surface tension effects 

at the interface separating two fluids. For a liquid-vapor system, 

when φ is the heat flux, γ would account for the latent heat ef- 

fects associated to phase change, and so on. Upon using the fact 

that, on the interface S i , n 1 = −n 2 as the normals are defined to 

be directed out of the corresponding phase (see Fig. 2 ), we can re- 

write (14) as 

�1 = V ∇ · φ − ∇ · (V 2 〈 φ2 〉 ) −
∫ 

S i 

φ2 · n 2 dS i + 

∫ 
S i 

γ dS i , (16) 

or, by the geometric theorem (7) , 

�1 = V ∇ · φ −
∮ 

S 2 + S i 
φ2 · n 2 dS + 

∫ 
S i 

γ dS i . (17) 

Let us now set in this equation 

φ2 = φ + φ′ 
2 . (18) 
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