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a b s t r a c t

Direct numerical simulations of a swarm of deformable drops rising in density stratified fluids are
presented at intermediate Reynolds numbers. All flow scales are fully resolved using front-tracking/
finite-volume method. The average rise velocity and velocity fluctuations of the swarm are reduced in
the presence of density stratification. The isotropy in velocity fluctuations is enhanced as the volume
fraction increases. The higher likelihood of the cluster formation is illustrated in the presence of density
stratification and is explained by quantitative assessment of the microstructure using radial and angular
pair probability distribution functions. The combined effect of the drop deformability and density
stratification on the average deformation of the drops is investigated.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

In oceans and lakes, vertical variation of water temperature or
salinity results in the generation of vertical density layering in
the water column. The rising motion of bubbles in oceans and lakes
(Bayareh et al., 2013), bubble mixers used for aeration of lakes and
reservoirs (Hill et al., 2008) and motion of drops during oil spills
(Blumer et al., 1971) are few examples of important processes that
are being affected by density stratification. Oil spills can cause
extensive hazards to marine and wildlife habitats as well as fishing
and tourism industry (Juhasz, 2012). The ocean density stratifica-
tion is known as one of the main factors in trapping of the oil
plume and dispersed drops (Socolofsky and Adams, 2003; Camilli
et al., 2010). Understanding the effect of stratification on the rising
motion of the swarm of drops is necessary for accurate estimation
of the rising time, dispersion of the oil, and consequently biodegra-
dation. Recent studies have shown that the motion of a single drop
through either a sharp or continuous density stratification is sub-
stantially affected by stratification. For a drop settling through an
interface between two fluids of different densities, Blanchette
and Shapiro (2012) reported a significant reduction of the settling
velocity at the interface in the absence of the Marangoni effects
and even the reversal of the motion of the drop in the presence
of the Marangoni effects. The study of the settling dynamics
through a sharp density interface provides important insights
about the physics of the motion of a bubble/drop in stratified

fluids. However, the size of bubbles/drops in aquatic environments
are generally much smaller than the length scales of density
gradients in the water column and thus a more realistic physical
model in the natural environment is represented by a linear
stratification. It has been recently found by Bayareh et al. (2013)
that the presence of a linear density gradient results in a notable
drag enhancement of a rising drop and subsequently extends the
travel time of the drop in the water column by up to 30%.

The dynamics of the settling and drag enhancement of rigid par-
ticles in stratified fluids has been reported both experimentally and
numerically (Srdić-Mitrović et al., 1999; Torres et al., 2000; Yick
et al., 2009; Doostmohammadi et al., 2014; Doostmohammadi
and Ardekani, 2014). When the viscous forces dominate the inertial
effects, the drag enhancement is due to the entrainment of a light
fluid behind the rigid particle (Yick et al., 2009; Doostmohammadi
et al., 2012), while in a strong inertial regime the collapse of rear
vortices behind the particle results in the higher resistance to the
vertical motion of rigid particles (Torres et al., 2000). For a
pair of rigid particles settling in a linearly stratified fluid,
Doostmohammadi and Ardekani (2013) quantified the role of
stratification on the interaction between the two particles. Authors
showed that for a pair of particles settling side-by-side, unlike a
homogeneous fluid, stratification results in the attraction between
the particles. In addition, prolonged collision time was reported for
in-tandem settling of a pair of particles in stratified fluids com-
pared to the homogeneous counterpart. For a cloud of particles
in a stratified fluid, Luketina and Wilkinson (1994) showed the
entrainment of the ambient fluid by the particle cloud up to a max-
imum depth where the particle fall out. Experiments of Hussain
and Narang (1984) demonstrated the formation of a double plume
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structure of bubbly flows when they interact with a stratified fluid.
Socolofsky and Adams (2003) then showed that the buoyancy
effects slow down the vertical intrusion of the plume of bubbles
and result in a horizontal intrusion of a plume that constantly
entrains the surrounding fluid. Despite the recent studies of the
motion of a single drop in stratified fluids and studies of the inter-
action of plumes of bubbles with stratified fluids, the research on
the interactive motion of swarms of deformable particles/drops
in the presence of the density stratification is virtually non-
existent.

In this study, we numerically investigate the effects of density
stratification on the ascending motion of a swarm of drops. We
particularly focus on the spatial distribution of the drops and clus-
ter formation in order to characterize the microstructure of the
swarm. In addition, the effect of stratification on pseudo-turbu-
lence properties of the flow is presented.

Governing equations

The migration of a swarm of drops in an incompressible, line-
arly stratified fluid is governed by the following equations
(Bayareh et al., 2013):

r � u ¼ 0; ð1Þ

q
Du
Dt
¼�rpþðq� �qÞgþr�lðruþðruÞTÞþ

Z
rj0n̂dbðx�x0ÞdA0;

ð2Þ

DT
Dt
¼ jr2T; ð3Þ

where u is the velocity vector, t the time, p the pressure, and g is the
acceleration of gravity. The local density and viscosity of the fluid
are q and l, respectively. The last term in Eq. (2) represents the
interfacial tension between the continuous and dispersed phases
and it is evaluated at point x. j0 is twice the mean curvature of
the interface of the drop, n̂ is the unit vector normal to the interface,
dA0 is the surface element at the interface of the drop, db is the
three-dimensional delta function which is discontinuous at x0,
located on the interface, �q ¼ 1

L3

R
V qdV is the mean density over

the entire computational domain, j is the thermal diffusivity coef-
ficient, and T is the temperature. In driving Eq. (3), we have
assumed that the thermal diffusivity and conductivity coefficients
in the dispersed and continuous phases are uniform and equal
(Bayareh et al., 2013). Eqs. (2) and (3) are coupled by assuming a
linear relation between the density and the temperature, i. e.,
q ¼ q0ð1� bðT � T0ÞÞ, where b is the coefficient of thermal expan-
sion and the reference density and reference temperature are
shown by q0 and T0, respectively. Fluid properties in and out of
the drops are distinguished by defining a color function a which
is zero inside and unity outside the drops. Thus q0 ¼ aqf 0

þ
ð1� aÞqd0

; l ¼ alf þ ð1� aÞld and b ¼ abf þ ð1� aÞbd represent
fluid properties in the entire domain, where subscript f refers to
the continuous phase and d to the dispersed phase, respectively.

The physics of the motion of the swarm of drops in a linearly
stratified fluid can be characterized by a number of dimensionless

parameters. The Archimedes number Ar ¼ gd3qf 0
ðqf 0
� qd0

Þ=l2
f

represents the ratio of gravitational force to the viscous force act-
ing on a drop, where d denotes the diameter of a spherical drop.

We use the Eötvös number Eo ¼ ðqf 0
� qd0

Þgd2
=r to characterize

the deformability of drops. The stratification of the fluid is charac-

terized by the Froude number Fr ¼W=ðNdÞ, where N ¼ ðcg=qf 0
Þ1=2

is the buoyancy frequency and c is the background density gradi-
ent in the water column. We define the reference velocity W based

on Hadamard–Rybczynski velocity (Hadamard, 1911; Rybczynski,
1911):

W ¼ 1
6

gðqf 0
� qd0

Þd2

lf

lf þ ld

2lf þ 3ld
ð4Þ

which corresponds to the settling velocity of an isolated drop in an
unbounded homogeneous fluid in the Stokes regime. Unless other-
wise stated, the velocity is scaled with W and time is scaled with
s ¼ d=W . The ratio of the diffusivity of the momentum mf to the dif-
fusivity of the stratifying agent is represented by the Prandtl num-
ber Pr ¼ mf =j. The volume fraction of Nd number of drops in a
periodic box of length L is defined as / ¼ Ndpd3

=6L3. The ratios of
material properties g ¼ qd0

=qf 0
; k ¼ ld=lf and B ¼ bd=bf are other

dimensionless parameters of the problem. In order for the swarm
to reach a steady state condition, we set qf 0

bf ¼ qd0
bd, so that the

drop density reduces as it enters warmer fluid layers. As a result,
the spatial variation of the temperature inside and outside the
drops become identical and drops eventually reach a statistically
steady rise velocity (Bayareh et al., 2013).

The rise Reynolds number ReW ¼Wsd=mf is calculated a posteri-
ori based on the statistically steady-state average slip velocity of
the swarm of drops Ws. The slip velocity is defined as the relative
velocity between the dispersed and continuous phases:

WsðtÞ ¼
1

Nd

XNd

i¼1

Wi
dðtÞ �

1
Vf

Z
Vf

wdv ; ð5Þ

where Wi
dðtÞ denotes the instantaneous velocity of the ith drop and

thus the first term on the right-hand side of Eq. (5) represents the
instantaneous average velocity of the swarm of drops WdðtÞ. The
second term on the right-hand side of Eq. (5) stands for the vol-
ume-averaged velocity in the stratified fluid, where Vf denotes
the volume of the continuous phase. The statistically steady-state
rise velocity of the swarm Ws is thus obtained by considering the
time average of WsðtÞ:

Ws ¼
1

tf � ti

Z tf

ts

WsðtÞdt; ð6Þ

where a time period ½ti; tf � is chosen in such a way to exclude initial
transient effects on the average rise velocity. Similarly, the instanta-
neous and time-averaged velocity fluctuations can be calculated,
respectively, as follows

W 0ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nd

XNd

i¼1

ðWi
dðtÞ �WsðtÞÞ

2

vuut ; ð7Þ

and

W 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tf � ti

Z tf

ts

W 02ðtÞdt

s
: ð8Þ

The Reynolds number based on the velocity fluctuation is defined as
ReW 0 ¼W 0d=mf .

In this study, we focus on the effects of stratification of the sur-
rounding fluid, deformability of the drop and volume fraction of the
swarm on the rising dynamics of drops in a linearly stratified fluid.
The Froude number, Eötvos number and volume fraction are varied
independently to isolate the above effects, respectively. Unless
otherwise stated, we use Ar ¼ 1100 corresponding to ReW �
15� 25 in a homogeneous fluid depending on the value of volume
fraction and deformability. To model a temperature-stratified fluid,
Pr ¼ 7 is used in all simulations. Table 1 lists the relevant dimen-
sionless parameters and their range used in the present study.
Please note that the range of Froude numbers used in the present
study corresponds to density stratifications that are much larger
than what is commonly found in oceans ðN � 0:01—0:1 s�1Þ.
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