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a b s t r a c t

In the present work, the linear stability of two-layered stratified channel flows to long wave disturbances
is studied. In particular, the study addresses the stability of laminar inclined counter-current and concur-
rent flows in the regions of multiple solutions for the holdup and pressure drop. The analysis is carried
out by solving the Orr-Sommerfeld equations for two-plate geometry, through a formal power series
in the wave number. The results are summarized in the form of stability boundaries on flow rate maps,
which enable a systematic study of the effect of the system physical parameters on the stratified-smooth/
wavy transition in gas–liquid and liquid–liquid systems. It is demonstrated that for counter-current flow
there is a region of low flow rates where the two solutions for the holdup are stable. Likewise, the results
of concurrent gas–liquid upward flows reveal a region where all three solutions are stable. Moreover, it
was found that the middle solution is always stable within the entire 3-s domain. Additionally, the anal-
ysis of the wave induced stresses in the axial direction reveals that the terms in phase with the wave
slope should be considered in long wave stability analyses of stratified flows.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Stratified flow is a basic flow pattern in horizontal and inclined
gas–liquid and liquid–liquid systems in a gravity field, where a
continuous layer of a light phase flow on top of a heavier phase.
Stratified two-phase flow regime is frequently encountered in var-
ious important chemical and industrial processes. For certain oper-
ating conditions however, interfacial instabilities can arise and
may produce undesired effects. Therefore, the exploration of the
interface stability dependence on the operational parameters is
of practical importance.

Exact solutions for steady laminar stratified flow in inclined
pipes are available in the literature (e.g. Ullmann et al., 2004).
However, an exact formulation of transient flow in pipe geometry
is too complicated to conduct a rigorous stability analysis, and the
stability boundaries are commonly predicted based on the simpli-
fied 1D two-fluid models. On the other hand, exact analysis of the
flow in the simpler geometry of two plates can be conveniently
carried out to provide insights into the mechanisms involved in
the destabilization of stratified flows. Indeed, since the classical
work of Yih (1967), the stability of stratified flow in the two-plate
geometry has been extensively studied in the literature (e.g. Hoo-

per and Boyd, 1983; Yiantsios and Higgins, 1988; Charru and Fabre,
1994; Kuru et al., 1995). Although, a considerable amount of stud-
ies addressed horizontal flow (where the gravity driven multiple
solutions are absent), only few referred also to inclined flows (Til-
ley et al., 1994; Boomkamp and Miesen, 1996; Amaouche et al.,
2007; Vempati et al., 2010). In those few studies however, the issue
of multiple solutions was not considered.

Exact solutions for steady flow with a smooth interface indi-
cates that in the counter-current region there exist always two
possible solutions, whereas in the concurrent up-flow and down-
flow a triple solution is obtained in a limited range of the flow
parameters (Ullmann et al., 2003a,b, 2004). The introduction of
multiple solution regions on flow pattern maps of various two-
phase systems shows the practical significance of multiple solu-
tions, and that their boundaries may be associated with flow pat-
tern transition. The feasibility of multiple holdups was also
verified experimentally (Ullmann et al., 2003a,b). However, stabil-
ity analysis is required to determine the range of parameters where
the assumption of a smooth interface is valid. Such an analysis may
also rule out the feasibility of part of the solutions in the multiple
solution regions.

The stability of the flow with respect to long wave disturbances
is of particular interest since long wave is an inherent approxima-
tion of two-fluid models. In the literature of gas–liquid and liquid–
liquid in channels, the instability of the stratified flow pattern is
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usually associated with to the Kelvin–Helmholtz (K–H) mecha-
nism, and the stability analysis is carried out based on the transient
two-fluid model equations. The K–H mechanism attributes the
growth of interfacial disturbances to the streams inertia forces,
which give rise to wave induced pressure fluctuation in phase with
the wave height. However, it has been long recognized that the K–
H mechanism is not the one responsible for wind-wave generation.
The literature on wind waves attributes the energy transfer from
the wind to the waves to the Miles-Phillips theory (e.g. Miles,
1962) and to the sheltering mechanism (Jeffreys, 1925), where
wave induced pressure fluctuation in phase with the wave slope
are responsible for the wind drag and momentum transfer to the
waves. According to Miles-Phillips theory, pressure fluctuation in
phase with the wave slope results from wind-wave interactions
within the critical layer above the water surface, where the air
velocity is lower than the wave speed. Deformation of the air flow
within the critical layer results in a low pressure at the leeward
side and high pressure on the windward side of the wave. Accord-
ing to the Jeffery’s sheltering mechanism, the low pressure at the
leeward side is attributed to separation of the air flow over the
crest, which may occur if the air flow is faster than the wave. How-
ever, since during the initial stage of the wave growth, the wind at
the wave surface is slower than the wave, the sheltering mecha-
nism is considered to be relevant only at some mature stage of
the wave growth, when the local slope becomes larger than a crit-
ical value (e.g., Banner and Melville, 1976; Kawai, 1982; Kharif
et al., 2008).

In the general case of two-phase flow in channels, it is not
apparent whether the wave velocity is faster or slower than the
interfacial velocity. Moreover, it is not obvious which of the phases
is the faster one and thus dominates the interfacial interactions
that lead to instability and wave growth. Nevertheless, it is possi-
ble that the interaction between the wave and the flow fields in the
two layers will give rise to wave induced stresses in phase with the
wave slope. Exploring this possibility in the limit of the long wave
approximation is of significance for further analysis and under-
standing to what extent the above wind-wave generating mecha-
nisms are of importance also in destabilizing the interface
between two laminar layers and in the framework of two-fluid
models.

This study was undertaken with the purpose of exploring the
linear stability of two-layered stratified channel flows to long wave
disturbances at operational condition associate with multiple solu-
tions. The analysis was carried out for the general case of counter-
current and concurrent flows, by solving the well-known Orr-Som-
merfeld equations for the two-plate geometry, through a formal
power series in the wave number. It provided a closed form solu-
tion for the eigenvalues and eigenfunctions. The results are sum-
marized in the form of stability maps showing the stable and

unstable ranges of the various system parameters. The solution is
also utilized for deriving the expressions for calculations of the
wave induced tangential and normal stresses.

2. Formulation of the problem

Consider the flow of two immiscible, incompressible fluids, la-
beled j = 1, 2, flowing in an inclined channel (0 6 b 6 p/2) as shown
in Fig. 1. The flow, assumed isothermal and two dimensional, is dri-
ven by an imposed pressure gradient and a component of gravity in
the x̂ direction. For the indicated coordinate system, the dimen-
sionless continuity and momentum equations governing the flow
in each phase are:
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These equations are subject to the no-slip impermeable wall bound-
ary conditions

y ¼ 1; u2 ¼ v2 ¼ 0 ð2aÞ
y ¼ �n; u1 ¼ v1 ¼ 0 ð2bÞ

and to the following boundary conditions at the interface, y = g(x, t)
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Eqs. (2c)–(2f) represent kinematic and dynamic conditions (see Jo-
seph and Renardy, 1993 for more details), where [f] denotes the
jump f2–f1 across the interface in any quantity f. The dimensionless
variables and parameters are defined as follows:
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where ûj; v̂ j, and p̂j are the velocities components and pressure of
fluid j, lj, mj and qj are the corresponding dynamic viscosity, kine-
matic viscosity and density, and t̂, g and r denote the time, gravita-
tional acceleration, and interfacial surface tension, respectively. As
seen, the length, velocity, time and pressure scales are h2, ui, h2/ui
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Fig. 1. Schematic description of two-layer flow configuration in an inclined
channel.
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