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a b s t r a c t

Numerical simulations of two-fluid flow models based on the full Navier–Stokes equations are presented.
The models include six and seven partial differential equations, namely, six- and seven-equation models.
The seven-equation model consists of a non-conservative equation for volume fraction evolution of one
of the fluids and two sets of balance equations. Each set describes the motion of the corresponding fluid,
which has its own pressure, velocity, and temperature. The closure is achieved by two stiffened gas
equations of state. Instantaneous relaxation towards equilibrium is achieved by velocity and pressure
relaxation terms. The six-equation model is deduced from the seven-equation model by assuming an
infinite rate of velocity relaxation. In this model, a single velocity is used for both fluids. The numerical
solutions are obtained by applying the Strang splitting technique. The numerical solutions are examined
in a set of one, two, and three dimensions for both the six- and seven-equation models. The results
indicate very good agreement with the experimental results. There is an insignificant difference between
the results of the two models, but the six-equation model is much more economical compared to the
seven-equation model.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

Multi-fluid flow is known as the simultaneous flow of more
than one fluid phase. The fluids may be at different phases of either
the same or different substances. Examples include liquid and its
vapor flows in evaporators, condensers, and over torpedoes; gas–
liquid flows in an oil production pipeline system; liquid–solid
flows in blood and rivers; and gas–liquid–solid flows in chemical
reactors. Typically, the flow is under large disparate conditions of
pressure, density, and flow speed. The density ratios are typically
in the order of 103–105 and with a sound speed ratio of 102–103.
These types of flows are mainly responsible for difficulties in mod-
eling and numerical methods.

There are two general approaches to describe multi-fluid flows:
the Euler–Lagrange approach and the Euler–Euler approach. In the
Euler–Lagrange approach (Giannadakis et al., 2008), one fluid
phase is the continuum, while the others are considered dispersed
phases such as particles, bubbles, or droplets. In this approach, the
balance equations are solved for the continuous fluid, and the dis-
persed phase trajectories are tracked by integrating the equations
of motion for each dispersed phase. Since this approach captures
the flow features at the level of a single dispersed phase, it is com-
monly quite expensive. In the Euler–Euler approach (Bear and

Nunziato, 1986; Kapila et al., 2001; Layes and Métayer, 2007;
Lindau et al., 2006; Merkle et al., 2006; Murrone and Guillard,
2005; Owis and Nayfeh, 2003; Saurel and Abgrall, 1999; Saurel
et al., 2009; Venkateswarana et al., 2002), all fluids are considered
continua. The fluid phases are treated separately using multiple
sets of balance equations. Each set describes the motion of the
corresponding fluid, which has its own pressure, velocity, and tem-
perature. In addition to the balance equations, a transport equation
for the volume fraction evolution of one of the fluids is also solved
to track the different fluids. This approach is usually called the
multi-fluid seven-equation model, or the parent model (Saurel
and Abgrall, 1999). It allows the most general description of
multi-fluid flows. However, it is considerably expensive because
it deals with the solution of a large system of equations, that is,
12 equations for a two-dimensional (2D) two-fluid case and 14
equations for a three-dimensional (3D) case. A number of ‘‘re-
duced’’ compressible models based on the two-fluid seven-equa-
tion model have been developed in the literature. The dependent
variables can be generally categorized into three groups: six-equa-
tion models (either having two pressures with a single velocity and
two temperatures or a single pressure, two velocities, and two
temperatures) (Saurel et al., 2009), five-equation models (using a
single pressure, a single velocity, and two temperatures) (Kapila
et al., 2001; Murrone and Guillard, 2005), and four-equation mod-
els (homogeneous equilibrium models [HEMs]) (Lindau et al.,
2006; Owis and Nayfeh, 2003). Among these groups, the HEMs
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are the simplest and are obtained from the patent model with the
assumptions that all fluids share the same pressure, velocity, and
temperature. In this case, the mass, momentum, and energy bal-
ance equations are sufficient to describe the flows. Although the
assumptions of the HEMs clearly indicate some limitations, they
can still be quite adequate for certain flow conditions (Ha et al.,
2012a, b; Merkle et al., 2006).

This study aims at developing and examining a numerical solu-
tion procedure for the six- and seven-equation models. The paper
is presented in five sections. The introduction is followed by the
presentation of the two-fluid models. The third section presents
the numerical solution procedures. The fourth section presents
the numerical results and discussions. A summary of the com-
pleted work and the concluding remarks of the study are given
at the end of the paper.

Two-fluid models

By neglecting all turbulent terms, the viscosity, the surface ten-
sion, the surface energy, and the heat terms, everywhere except at
the interfaces, the extension of the two-fluid seven-equation
model (Saurel and Abgrall, 1999) to the multidimensional problem
is given as follows:
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where U is the conservative vector; E, F, and G are the inviscid flux
vectors in the x, y, and z directions, respectively; H represents the

volume, momentum, and energy exchange between two fluids; VR

represents the velocity relaxation term; PR represents the pressure
relaxation term; l and k represent the rates of pressure relaxation
and velocity relaxation, respectively; SR represents the source
term; Ek is the total energy for the fluid k (k = 1, 2),
Ek ¼ ek þ ðu2

k þ v2
k þw2

kÞ=2; ek, ak, qk, uk, and pk are the internal
specific energy, volume fraction, density, velocity, and pressure
for the fluid k, respectively; and pI and uI are the mixture pressure
and velocity, respectively.

The mixture density, pressure, and velocity are defined as
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The compatibility relation for the volume fraction is given as

X2

k¼1

ak ¼ 1 ð4Þ

In the derivation of a reduced model, i.e., the six-equation
model, we used the assumption of an infinite rate of velocity relax-
ation (k ?1) to define a single velocity (u1 = u2 = u, v1 = v2 = v, and
w1 = w2 = w). Subsequently, by summing the two momentum
equations and cancelling out the velocity relaxation term in the
seven-equation model, the six-equation model can be obtained
as follows:
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For the system closure, the stiffened gas (SG) equation of state
(EOS) is used for each pure fluid as

pk ¼ ðck � 1Þqkek � ckpk ð7Þ

where ck and Pk are the specific heat ratio and reference pressure of
fluid k, respectively. These two parameters can be determined by
using a calibration method as suggested by Cocchi et al. (1996).
For a gas, Pk = 0 and the SG EOS is identical to the ideal gas EOS.
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