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Continuum models for two-phase and granular flows have been
derived from the microscopic equations of motion using either vol-
ume averaging (Anderson and Jackson, 1967; Drew, 1971;
Whitaker, 1973; Elghobashi and Abou-Arab, 1983) or ensemble
averaging (Batchelor, 1976; Reeks, 1992; Zhang and Prosperetti,
1994; Lun et al., 1984) to obtain the macroscopic fields. The gen-
eral form of the multiphase momentum equations (Drew, 1971;
Whitaker, 1973) contain stress terms that require detailed knowl-
edge of the physics of the microscale interactions of the phases. For
particle suspensions, progress is usually made by assuming lin-
earized relationships between the hydrodynamic force and the
local flow based on viscous (Anderson and Jackson, 1967,
Batchelor, 1976; Reeks, 1992) or inviscid (Zhang and Prosperetti,
1994) theory. Alternatively, closures for the stress terms have been
postulated using gradient transport relationships (e.g. Elghobashi
and Abou-Arab, 1983). In granular flow, model closures have been
obtained for rapid dilute granular flows (Lun et al., 1984) where
the interactions are predominantly collisional and frictional effects
or enduring contact is negligible. The theoretical studies have
described the conditions under which the volume averaging proce-
dure would produce smooth well-behaved continuum fields, but
provide little detail beyond the general requirement that the aver-
aging length scale, L, is much larger than the particle diameter, D
(e.g. Whitaker, 1973; Jackson, 1997).

Discrete particle simulations where the microscale interactions
are fully resolved provide an attractive tool for investigating the
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bulk rheological properties of particle-laden and granular flows
as a function of the particle volumetric concentration, ¢. Such fully
resolved simulations are now possible as a result of recent
advances in Cartesian grid moving boundary numerical methods
that track the inter-phase Lagrangian boundaries and model the
effect of the no-slip boundary condition by adding terms to the
equations of motion. For example, in the immersed boundary
method (Peskin, 2003), the solid boundary is replaced by a deform-
able boundary that exerts a frictional force on the surrounding
fluid. In the distributed Lagrange multiplier method (Glowinski
et al, 1999) and the Lagrangian tensorial penalty method
(Vincent et al., 2014), a fictitious stress is added to maintain the fic-
titious fluid inside particles in solid body rotation. In the PHYSALIS
method (e.g. Zhang and Prosperetti, 2005), the numerical solution
in the vicinity of particles is corrected by an analytical solution of
the Stokes equations. Finally, in the pressure boundary integral
method (Simeonov and Calantoni, 2011), the pressure field of
hydrodynamically interacting particles is computed from a discon-
tinuous extension of the pressure Poisson equation inside particles
that relates the pressure gradient jump condition (essentially a sin-
gle layer potential) to the pressure Neumann boundary condition
on the particle surface. The numerical advances have recently
made possible fully resolved hydrodynamic simulations of various
practical problems such as the interaction of particles with turbu-
lence (Apte et al., 2009), sediment entrainment in turbulent chan-
nel flow (Ji et al.,, 2013), concentration waves in fluidized beds
(Derksen and Sundaresan, 2007) and turbulent particle-laden flow
in a vertical channel (Uhlmann, 2008).

Despite significant progress, fully resolved simulations of
particle-laden flow remain computationally expensive and are still
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limited to relatively small domains and O(1000) particles. The
question then arises as to what is the minimum acceptable averag-
ing length scale necessary to derive valid continuum model statis-
tics from particle-laden flow simulations. In comparison, much
larger systems with 0(100000) particles are now typical in DEM
simulations of granular flow (Silbert et al., 2001; Jop et al., 2006).
However, certain granular flows with convection patterns (e.g.
Forterre and Pouliquen, 2001; Borzsényi and Ecke, 2006) and
particle-laden flow with large particles lack a well-defined separa-
tion between macroscopic flows and grain-size motions. Thus, a
minimum averaging scale is essential to ensure that important
macroscopic behavior of complex flows is not being filtered by
the averaging process.

Here we will discuss practical considerations regarding the
choice of a volume averaging scale and the relationship of this
scale to the uncertainty of the filtered continuum fields. We limit
our discussion to the microscopic binary volume fraction field,
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where §V; is the volume of the solid phase in the elementary vol-
ume V. The corresponding continuous macroscopic (volume aver-
aged) volume fraction field is given by
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where L varies as the length of the side of cubes used for volume
averaging to approximate the continuum field variable of the parti-
cle phase.

Deriving empirical continuum models from particle resolving
simulations requires sufficiently smooth spatial variation of the
volume averaged fields. Here, the spatial noisiness of the macro-
scopic volume fraction field, ¢,, will be quantified using its vari-
ance, ¢?, over a macroscopically homogeneous sample that
consists of a collection of N averaging cubes centered at rj
(=1N)
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where ¢, the averaged macroscopic volume fraction over the entire
sample, is given by
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By dividing the standard deviation by the mean we obtain a
non-dimensional noise metric, v = g;/¢;, which is essentially an
inverse signal-to-noise ratio. We note that the noisiness of the vol-
ume averaged field is controlled by two factors, namely, the ratio of
the averaging scale, L, to the particle diameter, D, and the mean vol-
umetric concentration, ¢. As the averaging scale becomes compara-
ble to D, the integral in (2) will be less effective in smoothing the
variation of the binary volume fraction field. Choosing an averaging
scale larger than the particle size may still not be sufficient for
smooth variability at low volume fractions when there are few par-
ticles inside the averaging volume. Thus, for a specified noise toler-
ance, v, the averaging scale will be expected to increase inversely
with the concentration. In summary, the goal of this letter is to
investigate the functional dependence of L on the specified noise
tolerance, v, and the given sample volume fraction.

Using the Discrete Element Method (e.g. Cundall and Strack,
1979), we produced a macroscopically homogenous cubic sample
with 1,844,818 identical spherical particles each having diameter,
D =1 mm and the density of quartz, 2.65 g/cm>. The simulations

were performed with LIGGGHTS (Kloss et al., 2012) using a Hertz
ian-Mindlin-Coulomb contact law with Young’s modulus of
70 GPa, Poisson ratio of 0.08, coefficient of restitution of 0.2, and
coefficient of friction of 0.5. LIGGGHTS is based on the molecular
dynamics solver LAMMPS (http://lammps.sandia.gov, Plimpton,
1995) which includes granular packages that solve the linear and
angular momentum equations for the motion of Lagrangian parti-
cles. Except for the coefficient of restitution, the above contact
parameters correspond to the material properties of quartz. We
used a reduced coefficient of restitution to speed up the kinetic
energy dissipation and the packing of the particles. We show below
that the coefficient of restitution does not have a significant effect
on the noise statistics.

Initially non-overlapping particles with random coordinates
were settled under gravity for a period of 0.5 s in a 350 D tall con-
tainer with a 100D square hard-bottom base using periodic
boundary conditions in the horizontal. The hard bottom consisted
of slightly overlapping fixed particles having a random vertical dis-
placement with a maximum value of 0.5 D. The density of the ini-
tial random loose packing produced by the settling was increased
by vibrating the hard-bottom base for 2 s with an amplitude of
0.1 mm at 100 Hz. Subsequently, the particles were allowed to
resettle for another 0.5 s. During resettling, most of the energy dis-
sipation (six orders of magnitude decrease) took place in the initial
period of 0.2 s. The rough bottom boundary reduced undesirable
effects such as local ordering of particle distributions near plane
walls. Consequently, the procedure resulted in an approximately
random close packing sample. Any local effects of the bottom wall
on the mean concentration were mitigated further by choosing a
cubic sub-sample of size H=96 mm whose lower boundary
started 20 D above the hard-bottom base. The mean volume frac-
tion of the cubic sub-sample was ¢; = 0.628 and the mean coordi-
nation number (number of contacts per particle) was Z = 4.44.

To investigate the effect of the mean concentration on the vol-
ume averaging scale, we produced samples with lower concentra-
tion/larger size H (Table 1) by keeping the particle diameter D fixed
while uniformly stretching all coordinates of the initial (96 mm)*
sample. We constructed an approximation of the binary volume

fraction field (1) by dividing each H sample into N3, cubic voxels

of size D/100 and set ¢(r;) = 1(0) if the voxel center, r;, is inside
(outside) a particle. Given the large 0(10000°) number of voxels,
we used a “bucket” algorithm (adapted from Munjiza and
Andrews, 1988) to perform efficient voxel-in-particle searches
and efficient computation of the binary concentration and derived
macroscopic concentration fields. The bucket algorithm subdivides
the domain into cubes of size D called “buckets” and generates a
list of particles whose center is contained in each bucket by inte-
gerizing the particle coordinates with respect to D. Thus, the voxels
in a given bucket are only checked against the limited number of
particles in the current bucket and its immediate neighbors.
Once the binary concentration field is known, the macroscopic
concentration fields are computed hierarchically by starting with
the smallest boxes of size L = D/10. Since the box size, D/10, is
an integer multiple of the voxel size, the box-integrated volume
fraction, ¢,(r;j), is simply the mean of ¢(r;) for voxels contained
in the j-th box. The hierarchical computation utilizes a larger box
whose L is an integer multiple of the smaller box L. From the

Table 1

Cubical particle sample of size H of D = 1 mm particles.
Stretch factor 1 1.5 2.0 2.5 3.0 4.0
H/D 96 144 192 240 288 384
Noyox 9600 14,400 19,200 24,000 28,800 38,400
oL 0.6277 0.1860 0.0785 0.0402 0.0244  0.0098
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