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A B S T R A C T

The operation of mineral processing units or plants is related to the mineral composition of the ore. However,
unit performances are usually characterized in terms of metal content or recovery as this data is easier to be
obtained rather than the mineral content. This paper presents a data reconciliation method that combines
material balancing calculations and mineral stoichiometric information to estimate balanced mineral compo-
sition, chemical assays and flow rates in various streams of a mineral processing plant. The advantage of this
method is evaluated by comparing the variance of the reconciled variables from this method to those obtained
from usual data reconciliation methods. The estimated mineral composition leads to improved process perfor-
mance evaluation.

1. Introduction

The ore that is feeding a concentrator is made of minerals that
condition the energy requirements for the ore comminution and the
performance of the subsequent separation circuit. Indeed, a change in
the mineral composition of the ore may affect grinding mill throughput
as well as the recovery or grade of the economical products. Despite this
recognized relationships, the mineral composition of the ore is seldom
measured or estimated to provide regular information for plant per-
formance evaluation. Some methods such as QEM-SCAN are available
to measure the concentration of the minerals in the ore samples
(Lamberg, 2007; Whiten, 2008), but such an approach is too time de-
manding and expensive to be applied on a daily basis for plant mon-
itoring. Therefore, plant operators usually evaluate the plant perfor-
mance using chemical assays of metals or elements that are readily
measured from ore samples.

Samples of the streams of mineral processing plants are collected on
a daily basis to be assayed for the strategic elements. The measurements
are reconciled to produce coherent data based on the material con-
servation concept (Hodouin et al., 2010). Then the reconciled data is
applied to characterize the day to day operation of the plant in terms of
grade and recovery of the valuable metals. However, such diagnosis is
only partial as elements can be transported by different minerals that
respond differently to the concentration process. A possible way to
detect a problem resulting from the change in the mineral composition
of the ore requires determining the concentrations of the various mi-
nerals in the ore and in the produced salable concentrates. Since

measuring the mineral content of the ore could be a demanding task,
one should consider estimating this data from the daily chemical assays
of the samples collected on the main streams of the circuit. Some au-
thors have already investigated the problem. Whiten (Whiten, 2008)
described a method to estimate the minerals content of an ore sample.
Lamberg and Vianna (2006) proposed a method to do a sequential
mineral reconstruction followed by a material balance. Few authors
take account for the mass conservation of the reconstructed minerals
content (Subramanian et al., 2016). These authors consider the overall
problem of material balance reconciliation and mineral content re-
construction and apply their method to batch and semi-batch processes.
They also suggest a method to simultaneously carry out the mineral
composition estimation and to balance all the species content so that
mass conservation is verified for the overall processing circuit.

The objectives of this study are: (1) to propose a more efficient data
reconciliation calculation algorithm for large size data set based on a
hierarchical structure allowing an analytical solution for the ore mi-
neral and/or chemical composition; (2) to apply the method to a si-
mulated complex sulfide Pb-Zn-Cu-Ag ore flotation plant; (3) to com-
pare the reconciled process variables and performance indices
reliability of the proposed method to the conventional ones that do not
make use of the mineral stoichiometric constraints.

The paper consists of four sections. The first section presents the
formulation of the data reconciliation and mineral reconstruction pro-
blem involving flow rates, chemical elements and mineral composition
measurements. The second section proposes a method that simulta-
neously estimates the mineral composition from the chemical assays
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and balances this data with the estimated flow rates in the streams of a
circuit. The third section describes the simulated mineral processing
plant (a complex sulfides flotation plant) and the related data used to
test the method. The fourth section discusses the data reconciliation
results and compares the reliability of the variable estimates and metal
recoveries to the reliability of those obtained through two other sub-
optimal methods.

2. Formulation of the data reconciliation problem

A data reconciliation problem of a single process or a plant is
usually defined as a statistical procedure that allows the estimation of
measured and unmeasured process variables submitted to physico-
chemical constraints. Usually the main considered constraints are the
laws of mass and energy conservation. In the most frequent cases, one
considers the total mass conservation of one phase and of the chemical
species it is composed of, thus leading to a set of bilinear constraints
(Hodouin and Everell, 1980). However the problem might also consider
various phases, and various levels of the phase properties, i.e. tem-
perature, chemical or physical properties, size-wise chemical compo-
sition, etc…, therefore leading to non-bilinear conservation constraints
(Hodouin and Vaz Coelho, 1987; Bazin et al., 2003; Bellec et al., 2007).
It is often considered that the measurement errors follow Gaussian
distribution and the constraints are deterministic. The method applied
in all such cases, where random uncertainties are present, is based on

the maximum likelihood (ML) principle. In the present study the pro-
blem is limited to the following assumptions:

• The plant is assumed to operate in permanent regime (steady-state
reconciliation).

• The plant is a p nodes and ℓ streams (index j=1 to ℓ) network.

• The flowing material is the ore solid phase characterized by its F
flow rate vector of the Fj’s.

• Two ore properties are considered: the chemical composition xij
(mass fraction of element or component i on stream j, i=1 to n) and
the mineral composition ykj (mass fraction of mineral k on stream j,
k=1 to m).

• The mineral compositions are known through a stoichiometric ma-
trix φ (n×m) as detailed in Section 2.1.

• The measurements are unbiased and their random errors follow
Gaussian distribution without error correlation between the three
measurement levels (flow rates, chemical elements and mineral
mass fractions), but allowing error correlation within each of the
three levels.

• All the selected process variables are estimable.

• The variable estimation problem is redundant, a necessary condition
being that there are more measurements and non-redundant con-
straints than process variables to be estimated.

• The addition of the mineral stoichiometric compositions and pos-
sibly measured mass fractions add redundancy to the overall

Nomenclature

Variables and functions

a Number of measured elements ( ≤ ≤a n1 )
g zargmin ( )

z
Value of z which minimizes the function of g(z)

A, B, C Intermediate calculation matrices
F Vector of solids flow rates Fj
f Relative flow rates vector
f Diagonal matrix of relative flow rates
F Block diagonal matrix of the relative flow rates
f∗ Vector of independent relative solids flow rates
E (n×1) vector of e values required to express the stoi-

chiometry when using −Y
I Number of available information pieces or identity matrix

depending on the context
J() Maximum likelihood criterion
ℓ Number of plant streams
L Lagrange associated to a constrained LQ problem
m Number of selected ore minerals
M Network matrix
M Block diagonal matrix ofM repeated n times or of different

Mk matrices
n Number of selected ore chemical elements
p Number of nodes in the plant
q Number of measured mineral mass fractions ( ≤ ≤q m0 )
V Variance-covariance matrix
x Generic notation for any element mass fraction xij
X Vector of x values

−y y, Generic notation for any mineral mass fraction ykj
Y Vector of y values

−Y Vector of m-1 mineral mass fractions
Z Total number of variables to be estimated

Indices

x Index for a matrix related to chemical elements
y Index for a matrix related to mineral phases

f Index for a matrix related to flow rates
i Index for chemical elements
j Index for plant streams
k Index for minerals
r Lower index indicating either the removed mineral in the

conservation constraint or the reference flow rate
m Upper index indicating measurement values of any mea-

sured variable
^ Accentuation for an estimated or reconciled value of any

variable
– Upper index for any mineral content in a set of m-1 mi-

nerals

Greek symbols

α β, Matrices used for expressing the network flow rates from
the independent ones

λ Lagrange multiplier
φ Matrix containing the mass fraction coefficients corre-

sponding to the chemical stoichiometry of the minerals
ϕ (nℓ×mℓ) block matrix that is obtained through the re-

petition of φ
θ Matrix pointing at the measured variables
ψ Modified φ matrix for completeness constraint for mi-

nerals
Ψ Block matrix of ψ

Acronyms

DR1, DR2, DR3 Data reconciliation procedure using respectively
raw data, balanced data and including mineral constraints

LQ Optimization of a quadratic function under linear con-
straints

ML Maximum Likelihood estimation method
NLP Non-linear programming for optimization of a function

under non-linear constraints
RSTDV Relative standard deviation
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