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A B S T R A C T

A dynamic process model based on a base metal refinery including critical control layers has been developed.
The critical control layers include sensors, actuators, regulatory controllers, alarm systems, safety interlocks and
supervisory control. With the help of expert knowledge, a fault (abnormal event) library was incorporated into
the dynamic model.

Fault diagnosis methods are used to detect and identify abnormal process conditions. With the use of the
dynamic process model, fault detection and identification methods can be more rigorously and accurately
evaluated for hydrometallurgical industry use.

An economic performance function is developed from expert knowledge. Once the fault diagnosis is complete,
an economic impact analysis based on the fault diagnosis results is completed. A possible economic case for fault
diagnosis is concluded from the results.

1. Introduction

1.1. Dynamic models and their application

Dynamic models are useful tools for optimizing processes or asses-
sing possible process changes. These changes could be the possible
implementation of advanced control or process monitoring. Operators
can also be trained with dynamic models.

With the ongoing increase in computational resources, more com-
plex models are developed in the metallurgical industry. Extensive re-
search has been conducted on metal concentrator dynamic modelling.
This includes SAG mills, ball mills, crushers, screens, cyclones and
flotation cells (Karelovic et al., 2016; Alves dos Santos et al., 2014;
Quist and Evertsson, 2016; Salazar et al., 2009; Salazar et al. 2010).

In the hydrometallurgical industry, leaching is a widely used pro-
cess where some targeted metal is dissolved from the solid phase and
then separated. These systems usually involve complex chemical reac-
tions and are challenging to model and simulate given the constant
changes in feed materials and constantly changing chemical interac-
tions.

Not much work has been conducted towards the development of
dynamic models for nickel and copper leaching. Faris et al. (1992)
developed a nickel and copper acid leach model. The work illustrated

the possible use of dynamic models for operator training.
A dynamic model was recently developed by Dorfling et al.

(2013a,b) and updated by Miskin (2016). The model predicts the extent
of leaching through simulation of 21 complex chemical reactions. The
model includes various control layers, including sensor, actuators,
regulatory control, supervisory control, alarms, and safety interlocks.

This work will describe the structure of the dynamic model devel-
oped by Dorfling et al. (2013a,b) and Miskin (2016), and how it was
used for assessing fault diagnosis performance.

1.2. Process monitoring and fault diagnosis

In order to further improve process efficiencies, statistical methods
to detect and identify faulty process conditions have received sig-
nificant attention in several studies (Aldrich and Auret, 2014; Qin 2012;
Groenewald et al., 2006; Lindner and Auret, 2015; Russell et al., 2000).

Different strategies for fault detection and fault identification can be
used: plant-wide monitoring, where all measurements are considered
simultaneously, and distributed monitoring, where tailor-made ap-
proaches for specific types of abnormal events are applied in sub-
systems of the process. Plant-wide monitoring has the benefit of a
single, unified approach: fewer parameters to select and monitoring
modules to maintain. However, plant-wide monitoring may suffer from

https://doi.org/10.1016/j.mineng.2018.03.029
Received 31 July 2017; Received in revised form 25 January 2018; Accepted 24 March 2018

⁎ Corresponding author.

1 Current address: Opti-Num Solutions, Northview, 57 Sixth Road, Hyde Park, Johannesburg 2196, South Africa.
E-mail address: lauret@sun.ac.za (L. Auret).

Minerals Engineering xxx (xxxx) xxx–xxx

0892-6875/ © 2018 Elsevier Ltd. All rights reserved.

Please cite this article as: Strydom, J.J., Minerals Engineering (2018), https://doi.org/10.1016/j.mineng.2018.03.029

http://www.sciencedirect.com/science/journal/08926875
https://www.elsevier.com/locate/mineng
https://doi.org/10.1016/j.mineng.2018.03.029
https://doi.org/10.1016/j.mineng.2018.03.029
mailto:lauret@sun.ac.za
https://doi.org/10.1016/j.mineng.2018.03.029


poor fault identification performance: the inability to accurately de-
termine the location and type of abnormal event. Distributed mon-
itoring has the benefit of improved fault identification, but requires
more parameters to select and modules to maintain. Tailor-made ap-
proaches may also miss new types of abnormal events, not designed for.

Plant-wide monitoring has received much attention in literature.
Yin et al. (2012) compared a selection of latent variable methods (such
as principal component analysis, Fisher discriminant analysis, partial
least squares, and independent component analysis) and variants
thereof for plant-wide monitoring, as applied to the simulated Ten-
nessee Eastman process benchmark problem. Li et al. (2016) developed
a new fault identification approach using dynamic principal component
analysis and causality metrics (e.g. Granger causality and transfer en-
tropy), also applied to the simulated Tennessee Eastman process
benchmark problem. Rato and Reis (2013) also use dynamic principal
component analysis, but incorporating decorrelated residuals to
counter autocorrelation present in the Tennessee Eastman benchmark.
Yu et al. (2015) consider joint probability functions and Gaussian co-
pula for fault detection and identification (also on the Tennessee
Eastman problem).

Distributed monitoring typically involves designing fault detection
techniques for specific valve faults (e.g. Horch (1999) considers valve
stiction; Ling et al. (2007) investigate backlash, deadband, leakage and
blocking) or other control loop faults (Bauer et al. (2016) present an
excellent survey on control loop monitoring; Chen and Howell (2000)
describe self-validating control systems).

In this work, principal component analysis (PCA) in a plant-wide
monitoring approach is used. PCA is the most common fault detection
technique, requiring few parameters and design choices, and being able
to detect unknown abnormal events that would sufficiently upset
normal operating conditions. In PCA monitoring, faults are often
identified using contribution plots with reconstruction based con-
tributions, which were recently introduced by Qin and Alcala (2009).

1.3. Economic performance

Typically, monitoring performance is summarized in terms of false
alarm rates, missing alarm rates, and detection delays, and rarely as-
sessed in terms of economic performance (Olivier and Craig, 2017, Bin
Shams, 2010).

One approach to assessing economic performance for control sys-
tems (Bauer and Craig, 2008) may be adapted for use in monitoring
systems: the economic performance function. The aim of an economic
performance function is to evaluate the possible economic benefit of a
change to a process. Economic performance estimation techniques have
also not kept up with the changes in advanced process controllers
(Bauer and Craig, 2008). Economic performance functions are typically
used to assess regulatory control performance, and may not capture the
additional benefit of improved uptime and safety.

Another approach to assessing economic performance for mon-
itoring systems is to estimate the economic impact of shut downs on the
process, before and after monitoring system implementation (see
Nochur et al., 2001). This approach is challenging, since detailed in-
formation on maintenance management is required.

1.4. Contributions of this work

This paper aims to assess the possible benefits of process monitoring
on a copper-nickel pressure leaching system. The complex dynamic
model is used to generated realistic process data. PCA is trained on
simulated normal operating conditions data, and applied to simulated
fault data Faults are identified with contribution plots. The value of the
early fault detection and identification is then evaluated with specific
economic performance functions.

The methods used in this paper are selected based on a philosophy
of rigorous evaluation of fault diagnosis techniques. Rigour is in-
troduced in three ways: firstly, by creating the most realistic test

Nomenclature

A number of retained principal components
ANOVA analysis of variance
BMR base metal refinery
Cj squared prediction error contribution for variable j, aver-

aged over all samples
∼Cjj diagonal element j of residual subspace matrix
Ci j

HT
, Hotelling’s T2 contribution for variable j from sample i

Ci j
SPE
, squared prediction error contribution for variable j from

sample i
D density
D matrix used in calculation of Hotelling’s T2 reconstruction

based contribution
DD detection delay
EPF economic performance function
fi fraction of PGM element i lost to copper cathodes
F Flow rate
Fi PGM element i inlet flow rate to copper electrowinning

circuit
Fis PGM element i normal operating conditions flow rate to

copper electrowinning circuit
FAR false alarm rate
L level
LSD least significant difference
m total number of measured variables
MAR missing alarm rate
n total number of samples
NOC normal operating conditions
P pressure

Pi PGM price for element i
∼P unretained principal components
PA retained principal components
PA,j vector of weights associated with variable j in the retained

principal component matrix
PCA principal component analysis
PGM platinum group metal
RBC reconstruction based contribution
RBCj

HT Hotelling’s T2 reconstruction based contribution for vari-
able j

RBCj
SPE squared prediction error reconstruction based contribu-

tion for variable j
SPE squared prediction error
T temperature
T score matrix
Ti score vector for sample i
TTEST score matrix for unseen data
T2 Hotelling’s T2 statistic
TAR true alarm rate
x vector for a single sample of m measured variables
X scaled measurement matrix

̂X reconstructed scaled measurement matrix
XTEST unseen scaled measurement matrix
Xi,j scaled value for sample i and variable j

̂X i j( , ) reconstructed scaled value for sample i and variable j
δi vector of length m, with all elements zero, except the ith

element is one
λA first A eigenvalues
μ mean
σ standard deviation
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