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A B S T R A C T

In this paper, recovery covariances were used to estimate the kinetic parameters from batch flotation tests to
account for the lack of statistical independence and homoscedasticity in the cumulative recoveries. Non-linear
parameter estimations were compared by using unweighted least squares estimation (ULSE), weighted least
squares estimation (WLSE) and non-linear generalized least squares estimation (NLGLSE). Three autocorrelated
time-recovery curves were used as base case to simulate theoretical kinetic response. Single Rate Constant,
Rectangular and Gamma models were employed to describe the kinetic response.

The NLGLSE allowed for significant precision improvements in the parameter estimation with respect to ULSE
and WLSE, under known and constant covariance estimates. The variability of kSRC (SRC), kmax (Rectangular)
and kmean (Gamma) decreased by approximately 40% with respect to ULSE, and 28% in comparison to WLSE. For
R∞, the dispersion decreased 33% in comparison to ULSE, and 17% regarding WLSE. The limitations of ULSE
and WLSE were caused by a lack of validity of the assumptions of independence and homoscedasticity in the
time-recovery curves. The advantages of NLGLSE were only observed with accurate estimators of the covariance
matrix, which were obtained in the simulations and in a laboratory flotation test that involved 11 replicates.

Incorporating the covariance matrix in the parameter estimation allowed for improvements in the kinetic
characterization. Thus, uncertainties related to the ore potential and circuit sizing (obtained from R∞ and the
rate constant estimates) might be decreased using accurate covariance estimators in the objective functions.

1. Introduction

Laboratory batch flotation tests are routinely performed in in-
dustrial operations to compare metallurgical results of different geo-
metallurgical units as well as to define maximum achievable perfor-
mances for continuous operation. In addition, kinetic characterization
together with different scale-up methodologies have been also used to
design industrial flotation circuits. For example, Dobby and Savassi
(2005) suggested the use of the MinnovEX Flotation Test (MFT) to
obtain standardized kinetic results. These results, along with simula-
tions, have enabled the design of new and the reconfiguration of ex-
isting flotation circuits. Amelunxen and Amelunxen (2009a,b) reported
a fast-pulling laboratory method to determine flotation kinetics at la-
boratory scale. The authors applied this model, supported by con-
tinuous pilot tests, to determine optimum configurations based on a
cost-benefit approach. Boeree (2014) studied several variables such as
turbulence, segregation, froth phase and machine dimensions, which
differ significantly from laboratory-, pilot- and full-scale flotation sys-
tems. The generalization and applicability of the scaling-up

methodologies were questioned based on the significant differences
among all these systems.

Several model structures have been proposed to describe flotation
kinetics at laboratory, pilot plant and industrial scale. Garcia-Zuñiga
(1935) and subsequently Sutherland (1948) modelled flotation kinetics
by means of a single first-order rate constant, similar to the approach
for describing chemical reaction kinetics. Garcia-Zuñiga (1935) in-
corporated the maximum recovery, R∞, to describe a final value that
cannot be increased further. Sutherland (1948) also included an in-
tegral equation for mineral recovery, considering a distributed induc-
tion period for the valuable particles. A graphical method to describe
the probability of flotation of two minerals was reported by Kelsall
(1961), which discussed the effect of reagent dosage, fraction of locked
minerals, particle size and type of flotation machine on the probability
of flotation. The methodology, based on two rate constants and their
relative content, was applied size-by-size at industrial scale on an ore
consisting of chalcocite and malachite. Imaizumi and Inoue (1963)
discussed the distributed nature of the rate constant in the flotation
processes. As a result, a distribution function or spectrum was
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incorporated into the flotation rate equation. Woodburn and Loveday
(1965) used a continuous Gamma distribution for describing this
spectrum. The proposed probability density function (PDF) was suc-
cessfully applied in batch flotation modelling as well as for predicting
continuous performance of pyrite-silica separation. Klimpel (1980)
determined whether the flotation process was controlled by the flota-
tion rate or by the maximum recovery when reagents were changed.
The author used a Rectangular PDF to describe the flotation kinetics at
laboratory scale. The effect of changing reagent concentration on the
kinetic response was employed to illustrate the methodology. Ferreira
and Loveday (2000) proposed a flexible model consisting of the sum of
two normal distributions. This distribution is defined by six parameters
and numerical integration is required to obtain the predicted re-
coveries. The model fitting was tested with batch flotation tests of
different streams from an industrial cleaning circuit. Dobby and Savassi
(2005) used the k-distribution for modelling the batch flotation kinetics
and for scaling-up the results to continuous operation. This PDF is si-
milar to the Weibull, Whiten or other double-exponent functions. Other
authors have proposed second order (Arbiter, 1951) or fractional cal-
culus (Vinnett et al., 2015) approaches to describe flotation kinetics.
However, these model structures have shown either equivalence with
conventional first-order approaches or lack of robustness and physical
significance (Alvarez-Silva et al., 2016; Bu et al., 2017; Dowling et al.,
1985).

Goodness-of-fit of kinetic models have been extensively analysed
and compared based on flotation tests at laboratory scale. Lynch et al.
(1981) summarized a wide range of discrete and continuous distribu-
tions to describe the flotation rate. The authors pointed out that a better
fitting is typically obtained as the number of parameters increases;
however, the trade-off between the number of parameters and their
physical significance must be considered. Dowling et al. (1985) eval-
uated thirteen model structures based not only on the goodness-of-fit
but also on the confidence interval of the parameters. An extra para-
meterization caused the confidence interval of the parameters to be-
come wider (dilution), where the models with a high number of para-
meters were typically reduced to simpler forms. Mazumdar (1994)
compared five different model structures for the flotation rate constants
based on statistical indexes related to goodness-of-fit and parameter
stability. The results showed that no model was better than the others
for the evaluated datasets. Polat and Chander (2000) reported that
significant model fitting improvements are obtained when three-para-
meter models are used to describe flotation kinetics. This study also
included sample fractioning by size and specific gravity. The flotation
rate distributions approximated the classical first-order model for each
size-by-specific gravity class. Bu et al. (2017) emphasised the over-
fitting phenomenon caused by the increase in the number of parameters
in the kinetic models.

Bazin et al. (1995) studied the variability of laboratory flotation
tests considering: (i) sampling and assaying errors; (ii) operator- and
equipment-related errors; and (iii) the inherent random nature of the
flotation process (e.g., differences in liberation or collector adsorption
of sub-samples). Based on experiments with different operators and an
automated system, the authors concluded that the main source of
variability was the random nature of the process, with lower con-
tribution of the other two. Lotter (1995a,b) and Lotter and Fragomeni
(2010) recognized the importance of accurate estimations of metal
grades as well as the key role of subsampling, blending, replicating and
monitoring to report reliable metallurgical indexes. A high confidence
approach was proposed to decrease the uncertainties in the ore grade
estimations, which is based on the Gy's minimum sample mass rule
along with Safety Line models (Gy, 1979). In addition, Lotter (1995a)
reported a quality control model that included the comparison between
the sampled feed grade and total mass with those values calculated
from the flotation products (concentrate and tailings). This model
makes it possible reconciled and reproducible performance parameters
to be obtained from laboratory flotation tests, under specific threshold

values. Bazin et al. (1996) reported a data reconciliation methodology
to evaluate error propagation in batch flotation indexes (recovery and
cumulative grade). The data reconciliation results showed a slight
variance improvement in terms of the metallurgical indexes in com-
parison to that obtained directly from measured data. The error pro-
pagation considered the variances and covariances among empirical
grades and weights. Napier-Munn (2012) presented a complete statis-
tical analysis to determine and compare grade-recovery curves from
batch flotation tests. Empirical data from these tests were used to si-
mulate ideal conditions for modelling and for comparison purposes.
Although the auto-dependence among the samples was recognized, it
was not included to relate the enrichment ratio with the mineral re-
covery. Sandoval-Zambrano and Montes-Atenas (2012) carried out an
error propagation analysis for the flotation rate estimation based on the
size-by-liberation data reported by Welsby et al. (2010), which con-
sisted of flotation tests of a lead-zinc-silver ore in continuous operation.
The effect of measurement errors on the flotation rate estimation was
studied, assuming statistical independence among the input variables.
Size-by-liberation recoveries as well as residence time showed the
higher contributions to the rate constant variability, which presented
coefficient of variation ranging from 11% to 121%.

This paper presents the impact of using recovery covariances on the
estimation of the kinetic parameters from batch flotation tests. From
replicate tests, the sample covariance matrices were obtained. Such
matrices were used as baselines to simulate kinetic data under different
model structures (Single Rate Constant, Rectangular and Gamma).
These simulations allowed opportunities for improvements in the ki-
netic characterization to be identified by including the covariance effect
on the parameter estimation.

2. Flotation tests

Three samples of a porphyry copper ore deposit were used for flo-
tation tests. These three samples have chalcopyrite (CuFeS2) as the
main copper phase within a silicate matrix. The ore samples were
crushed using firstly a laboratory jaw-crusher and secondly a roll
crusher to obtain a particle distribution 100% passing 10 Tyler mesh
(1.7 mm). The sample was blended, riffled and then split using a 6-
bottle rotary splitter with a vibratory cone hopper to ensure homo-
genization. The subsamples were used for: (i) a grinding test; (ii, iii, iv)
three flotation tests at different operating conditions (no kinetics); (iv)
ore grade determination; (v) flotation kinetics; and (vi) left as witness
sample. Further riffling (by adjusting an appropriate bottle module to
the rotary splitter) was required to obtain 750 g-subsamples used in
grinding and flotation tests. Minor mass adjustment to the subsamples
were required thereafter. Thus, batches (iv) and (v) were used in this
study. The same procedure was successively carried out according to
the ore availability, for the three different samples.

The grinding time to obtain a P80 of 150 µm was previously de-
termined for the three ore samples to be 27.0min, 30.2 and 25.2min,
respectively. The solid was placed in a ball mill with 750mL of distilled
water and lime was added as a primary pH control. Similar to the
grinding time, a prior study was conducted to adjust the pH of the pulp
product at approximately 10. Thus, 295 g/ton, 185 g/ton and 220 g/ton

Table 1
Summary of flotation reagents and dosages.

Identification Commercial
name

Chemical name Dosage, g/t
of ore

Primary collector Matcol D-101 Modified
dithionocarbamate

33

Secondary
collector

Matcol SEC-301 Modified sodium di-
isobuthyl dithiosulfate

7

Frother F-749 Complex oxygenate/
hydrocarbon mixture

25
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