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a b s t r a c t

This work presents a computational methodology for the simulation of three-dimensional, two-phase
flows, based on adaptive strategies for space discretization, as well as a varying time-step approach.
The method is based on the Front-Tracking method and the discretization of the Eulerian domain employs
a Structured Adaptive Mesh Refinement strategy along with an implicit–explicit pressure correction
scheme. Modelling of the Lagrangian interface was carried out with the GNU Triangulated Surface
(GTS) library, which greatly reduced the difficulties of interface handling in 3D. The methodology was
applied to a series of rising bubble simulations and validated employing experimental results and com-
pared to literature numerics. Finally, the algorithm was applied to the simulation of two cases of bubbles
rising in the wobbling regime. The use of adaptive mesh refinement strategies led to physically insightful
results, which otherwise would not be possible in a serial code with a uniform mesh.

� 2013 Elsevier Ltd. All rights reserved.

1. Background

A bubble rising in a quiescent liquid reaches its terminal veloc-
ity when the forces acting on it (drag, buoyancy and weight) are in
equilibrium. However, unlike rigid bodies, deformation can take
place as a result of the surrounding flow and, also, the transfer of
momentum across the interface may induce vortices inside the
bubble. Therefore, the bubble shape will depend on the viscous
forces, interface forces, and also on the forces from the surrounding
flow (de Vries, 2001).

Rising bubble flows can be described in terms of the
Eotvos (Eo = gDq/2/r), Morton ðM ¼ gDql4

c=q2
c r3Þ and Reynolds

(Re = qcU//lc) numbers, written as functions of the gravity acceler-
ation (g), the density of the continuous phase (qc), the difference
between densities of the continuous and disperse phases (Dq),
the bubble equivalent diameter (/), the dynamic viscosity of the
continuous phase (lc), the characteristic flow velocity (U) and
the interface tension at the fluid–fluid interface (r).

Bubbles tend to deform when subjected to external flow fields
until normal and shear stresses balance at the fluid–fluid interface.
Their shape under the action of gravity in an initially quiescent
liquid can be grouped into three large categories: spherical,

ellipsoidal and spherical- or ellipsoidal-cap. If the interfacial ten-
sion and/or viscous forces are much more significant than inertial
forces, bubbles are termed spherical. Clift et al. (1978) classify a ris-
ing bubble as spherical if its height to width ratio lies within 10% of
unity. Ellipsoidal bubbles are oblate with a convex shape when
viewed from inside and may present axi-symmetry. As inertia
forces become more important, ellipsoidal bubbles may undergo
periodic dilatation or random wobbling motion, making shape
characterization a difficult task (Bhaga and Weber, 1981). Large
bubbles usually have flat or indented bases, without fore-and-aft
symmetry. Their fore-shape may resemble segments of oblate
spheroids of low eccentricity, thence the names spherical-cap or
ellipsoidal-cap. Bubbles in this regime may also develop thin enve-
lopes of dispersed fluid at their bases, usually referred to as skirts
(Brennen, 2005).

In the present work, the motion of a single bubble rising in a
quiescent liquid is simulated under various flow regimes, ranging
from low-Re, spherical bubbles, to high-Re, low-Morton wobbling
bubbles. The simulations were carried out using a Front-Tracking
(FT) method coupled with a Structured Adaptive Mesh Refinement
for solving the Navier–Stokes equations.

FT method was chosen over VOF (Hirt and Nichols, 1981) or
Level Set methods (Sethian and Smereka, 2003) because of its
superior capabilities for accurately representing the interface. As
a result, more control over fragmentation and/or coalescence is
possible. Also, calculating the interface tension force is significantly
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simpler in FT methods than in VOF and Level Set methods.
Annaland et al. (2006) provide a detailed description of pros and
cons about the most commonly used methods for multiphase flow
simulations.

The Front-Tracking method of Unverdi and Tryggvason (1992)
is based on the One-Fluid Formulation (OFF) and on the Immersed
Boundary (IB) method of Peskin (1977), Peskin (2002). The Navier–
Stokes equations are solved in an Eulerian grid and the interface is
tracked by an independent, triangular, surface mesh, usually
termed Lagrangian mesh, on which the interface tension force is
calculated. Grid communication is performed based on the IB
method, which represents the interface by imposing a force field
that is computed on the Lagrangian mesh and then spread on the
Eulerian grid. The velocity field is interpolated onto the Lagrangian
mesh by means of Dirac kernels.

2. The Front-Tracking method

In the OFF approach, the Navier–Stokes equations are solved as
if a single fluid, with space-dependent physical properties, were
used. The presence of the fluid–fluid interface is modelled using
a source term for the interface tension force, as shown as follows:

q
@u
@t
þ ðu � rÞu

� �
¼ r � ½lðruþ ðruÞTÞ�þ

�rpþ qgþ fr;

ð1Þ

r � u ¼ 0: ð2Þ

Here, u is the fluid velocity field, q(x, t) is the fluid density, l(x, t) is
the dynamic viscosity, p is the pressure, g is the gravity acceleration,
and fr is the interface tension force, which appears due to both the
surface tension between the flow phases and to the surface curva-
ture. The interface is represented by an unstructured, triangulated
Lagrangian surface mesh, on which the interface force is calculated
by integrating the interface tension on a surface element DS, as
dFr ¼

R
DS rjnds, where r is the surface tension coefficient, j is

twice the mean curvature for three-dimensional domains and n is
the local normal to the surface. By replacing the geometrical rela-
tion jn = (n �r) � n (Tryggvason et al., 2011) on this equation
and using the Stokes theorem, the force on a surface element can
be computed without explicitly calculating the surface curvature,
via

dFr ¼
I

dC
rt� ndC; ð3Þ

where dC is the boundary of the integration element, t is the unit
tangent and n is the outward unit normal, both computed at the
element boundary.

The force in Eq. (3) may be computed in various ways, and usu-
ally the integration is performed directly over the mesh elements.
Tryggvason et al. (2001) compute the tangent vectors from the end
points of the element edges, but perform a local surface fit in order
to calculate the normal vectors. Deen et al. (2004) compute the
tangent vectors likewise, but use the normals at the adjacent ele-
ments. Shin and Juric (2002), on the other hand, use the resultant
of t � n computed on both elements sharing an edge. In the present
work, the latter approach will be employed, and Eq. (3) is discret-
ized as

Fr ¼
X

j

rðtj � njÞ; ð4Þ

where Fr is the vector force acting on a given element, nj is the out-
er unit-normal associated to edge j and tj is the non-normalized
tangent vector at edge j. Notice that the indices are not related to
Einstein notation.

After being computed on the interface mesh, the force is spread
on the Eulerian grid, as in the IB method (Peskin, 2002), in the
vicinity of the interface position. The Navier–Stokes equations
can then be solved, yielding the pressure and velocity fields. Inter-
face advection is performed in a Lagrangian fashion, using the
velocity field interpolated from the Eulerian domain onto the mesh
surface vertices.

Interpolation and spreading processes are performed as de-
scribed in Tryggvason et al. (2001), using the following equation
as a Dirac kernel (Peskin, 1977):

WðrÞ ¼
1
4 ð1þ cosðp2 rÞÞ; r < 2;
0; r P 2;

(
ð5Þ

and

r ¼ x� X
hx

;
y� Y

hy
;

z� Z
hz

: ð6Þ

Physical properties such as viscosity and density are not liter-
ally advected. Instead, the position of the Lagrangian interface,
explicitly tracked in time, is used to locate the constant, but differ-
ent, material properties defined in the interior and exterior of the
bubble. This is achieved by means of an indicator function, which
yields a scalar field associated to each flow phase. Most researchers
use a Poisson equation in this step, since the scalar field is obtained
simultaneously in the entire domain. The high computational cost
of solving such equation, however, is well known.

Alternatively, Ceniceros and Roma (2005) employed the Closest
Point Transform (CPT) as the basis for an indicator function. CPT
consists in generating an implicit representation of the interface
geometry by computing its distance field (Mauch, 2003). When
used as an indicator function, however, its computation is limited
to an interval [�c, +c], where c is the absolute value of the largest
distance from the interface to a given point in the Eulerian domain.
The remaining of the domain is assigned with a constant value
(e.g.: +c inside the dispersed phase and �c outside it). A smoothed
Heaviside function is then applied to it, so that the interval [�c, +c]
is mapped to [0,1]. In the present work, expression (7) is used
(Yokoi, 2008; Ceniceros et al., 2010b).

HðuÞ ¼
1; u > c
1
2 1þ u

c þ 1
p sin pu

c

� �� �
; kuk 6 c

0; u < �c:

8><
>: ð7Þ

Finally, the indicator function can be used for calculating the
distribution of the density (q) and viscosity (l) fields as

qðuÞ ¼ HðuÞq1 þ ð1� HðuÞÞq2;

lðuÞ ¼ HðuÞl1 þ ð1� HðuÞÞl2:
ð8Þ

3. Temporal discretization

The time discretization scheme employed in the present work is
based on Ceniceros et al. (2010a) and Ceniceros et al. (2010b). A
few changes were introduced, so that various second-order,
semi-implicit schemes were parametrized according to the follow-
ing equation:

1
Dt

qnþ1ð/Þða2unþ1 þ a1un þ a0un�1Þ ¼ b1f ðunÞ þ b0f ðun�1Þ

þ k h2r2unþ1þ
h

h1r2un þ h0r2un�1
i
�rpn þ qnþ1g;r � unþ1 ¼ 0:

ð9Þ

In this equation, ai, bi and hi are given by: a0 = (2c � 1)x2/(1 + x), a1 -
= (1 � 2c)x � 1, a2 = 1 + 2cx/1 + x, b0 = 1 + c, b1 = � cx, h0 = c/2,
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