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A B S T R A C T

The early detection and root cause identification of abnormal events in industrial processes is important, to allow
for timely corrective actions, ensuring continued economic operation. This paper investigates the application of
statistical fault detection methods, in conjunction with process topology data-driven techniques for root cause
analysis, to a simulated milling circuit. Two faults (faulty particle size analyser and rapid mill liner wear) were
simulated, and the statistical monitoring techniques tested. Fault detection proved accurate, and variables
closely associated with the faults were identified by the root cause analysis. The need to further formalise the
selection of data for process topology generation for root cause analysis was highlighted. The milling circuit
simulation and fault data has been made available as a resource for future research. Economic performance
factors were developed to quantify the impact of the faults and motivate for fault detection and diagnosis.

1. Introduction

The challenge of detecting and diagnosing faults in increasingly
complex industrial processes (such as the minerals industry) has re-
ceived significant attention in the literature, with the focus being on
data-based methods (Ding et al., 2015; Ding, 2014; Groenewald et al.,
2006; Groenewald and Aldrich, 2015; Kadlec et al., 2009; Li et al.,
2016; Lindner and Auret, 2015; Yang and Xiao, 2012), rather than first-
principles process modelling (Agrawal et al., 2015; Guerrero et al.,
2016; Légaré et al., 2016; Salazar et al., 2014; Tidriri et al., 2016;
Venkatasubramanian et al., 2003a, 2003b). Here, fault detection is
defined as the indication at a specific time point that a faulty condition
has started occurring, or is continuing to occur. Fault diagnosis is de-
fined here as the indication of which measured process variables are
most associated with the faulty condition (also referred to as fault
identification in the literature), and the subsequent classification of
process variables as either symptoms or causes of the faulty condition
(also referred to as root cause analysis in the literature). The goal of
detecting and diagnosing faults is to reduce or prevent faulty operating
conditions and ensure continued economical operation.

Principal Component Analysis (PCA) and related methods (in-
cluding nonlinear and dynamic versions of PCA) are commonly used for
fault detection in the process industry (Aldrich and Auret, 2013; Chioua
et al., 2016; McClure and Gopaluni, 2015; Qin, 2012). Contribution-
based methods are often used in conjunction with PCA-based mon-
itoring to identify faults (Miller et al., 1998); methods include

complete, partial, diagonal, reconstruction-based and relative con-
tributions (Alcala and Qin, 2011, 2009).

Fault diagnosis is cited as being possible by means of causality
methods, which attempt to extract causal relationships between vari-
ables in the form of process topologies (Lindner and Auret, 2014;
Maurya et al., 2003a, 2003b) either purely from historical data (Bauer
et al., 2007; Bauer and Thornhill, 2008; de la Fuente et al., 2004;
Lindner and Auret, 2014) or by making use of process knowledge
(Groenewald and Aldrich, 2015; Landman and Jämsä-Jounela, 2016).

Despite the accepted economic benefits of process control in general
(Bauer and Craig, 2008; Bouffard, 2015; le Roux et al., 2016; Wei and
Craig, 2009) and fault detection specifically (Bin Shams et al., 2011),
relatively little work has been done to illustrate the economic impact of
correctly detecting and identifying faults. Extensive domain knowledge,
and significant effort, can be required to develop economic perfor-
mance factors, which relate process variables to economic performance.
The benefit is the continuous prediction of economic performance, and
the use of this prediction to assess test runs, plant modifications, control
schemes, or even decide whether to shut down a plant following a fault
(Olivier and Craig, 2017).

Whether detecting and diagnosing faults or assessing economic
performance, any proposed method must be demonstrated or evaluated
on a data set. While real operating data provides the most realistic test
of any method, the “ground truth” is often missing: for example, the
actual root cause of a fault may not be known. Simulated data is used in
many studies, as diverse conditions can be simulated without the risk of
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safety or financial impact. However, the simulations generating this
data should be as realistic as possible, in order to provide the level of
complexity and challenge required to test any proposed method, and
demonstrate real-world applicability.

This paper describes the application of data-based fault detection
and diagnosis techniques to a validated dynamic model of a run-of-mine
milling circuit (Coetzee et al., 2010; le Roux et al., 2013), and illustrates
the impact on economic performance of faulty or abnormal operation.

The proposed approach is suggested in general for more robust as-
sessment of the actual benefit of abnormal event detection and root
cause analysis in industrial processes. The dynamic simulation and si-
mulated data are available online to promote further analysis and
comparative studies.

The paper is structured as follows: Section 2 describes the milling
circuit model, and the economic performance criteria that were used,
and provides an overview of the data-based process monitoring ap-
proach which was applied. Section 3 shows and discusses the results of
the process monitoring and fault diagnosis, and Section 4 provides
conclusions and ideas for future work.

2. Methods

2.1. Dynamic mill circuit simulation with process disturbances and
abnormal events

A dynamic model of a run-of-mine mill circuit has been developed
to demonstrate the potential economic impact of fault detection and
diagnosis. The mill circuit model and its control system is briefly de-
scribed here, as well as the nature of input excitation (in the form of
disturbances) to the model, the generation of normal operating condi-
tions data and fault data. The model, which can be run in MATLAB and
Simulink, has been made available as supplementary material for future
research. For further details, see the Supplementary Material section of
this paper.

A dynamic model (rather than industrial data) provides a well-de-
fined data set to test the monitoring methods described below; the se-
lected dynamic model is based on actual operations, however, and so it

provides a level of complexity that ensures that the monitoring ap-
proach is rigorously tested.

2.1.1. Mill circuit model and control
The run-of-mine grinding mill circuit model presented by le Roux

et al. (2013) is considered. This simulation is based on the model found
in (Coetzee et al., 2010). This is a reduced complexity nonlinear model,
consisting of four defined system volumes (SV) connected as shown in
Fig. 1. The system volumes are the feeder, semi-autogenous mill, sump,
and hydrocyclone. The feeder is a superficial SV that exists to separate
the feed to the mill circuit into the five states used in the model. Fresh
feed ore, water and steel balls are added to the mill from the feeder
along with underflow from the hydrocyclone. The milled ore then exits
the mill and enters the sump where water is added to modify the
thickness of the slurry. Lastly, a pump transports the slurry to the hy-
drocyclone for classification.

The variable abbreviations used in Fig. 1 are described in Table 1.
The mill circuit model was built and tested in MATLAB R2014a,

R2016a and R2017a and Simulink, using the ODE45 numerical in-
tegration method.

A control system for the circuit, consisting of single loop PI con-
trollers with input filters and output saturation (see Table 2), was im-
plemented. The output saturation and controlled variable setpoints are
based on the data presented in le Roux et al. (2013).

Control loop pairings were determined based on previous in-
vestigations into this system (Craig et al., 1992). Control loop tunings
were based on Proportional-Integral controllers with the form in Eqs.
(1) and (2), and using the Ciancone correlations described in Marlin
(2000).
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The three control loops which were implemented were:

– The sump volume (SVOL) is controlled by manipulating the cyclone
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Fig. 1. Mill circuit model with control loops.
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