
Contents lists available at ScienceDirect

Minerals Engineering

journal homepage: www.elsevier.com/locate/mineng

A continuum based numerical modelling approach for the simulation of
WHIMS

Raheel Rasool, Holger Lieberwirth⁎

Institut für Aufbereitungsmaschinen, TU Bergakademie Freiberg, Lampadiusstraße 4, D-09599 Freiberg, Germany

A R T I C L E I N F O

Keywords:
Wet high intensity magnetic separator
(WHIMS)
Electro-magnetics
Magnetic particles
Maxwell’s equations
Level-set method
Edge finite elements

A B S T R A C T

Wet high intensity magnetic separators are used in magnetic separation of minerals with low susceptibility. The
dynamic process of material built-up in the matrix is influenced, among others, by the matrix geometry, gradient
and strength of the magnetic field. These factors, however, do change with the built-up of magnetic material in
the matrix.

Detecting the built-up of magnetic material is crucial to the continuous operation of the separation process. In
this study we present a numerical modelling approach for wet high intensity magnetic separation. The electro-
magnetic and the fluid flow field are modelled with the finite element method, while the material particles are
identified and evolved using the Level-set approach. Such a framework retains the influence of magnetic par-
ticles on the surrounding magnetic field and can be used to detect and predict material build-up in the matrix.
The model is validated with a benchmark example and the potential of the approach is demonstrated using a
simplified magnetic separation matrix example.

1. Introduction

The beneficiation of valuable minerals, such as tungsten (W) and
tantalum (Ta), typically involves a series of separation processes.
Through these processes, the grade and quality of the valuable mineral
is gradually increased from a low-grade raw-ore concentration to a
high-grade final product. The application and success of a particular
separation process is strongly dependent on the composition and
characteristics of the feed material, the intended product and the
gangue minerals. Most common separation technologies for these ma-
terials can be broadly categorized into three groups: gravity separation,
flotation and magnetic separation. In this article, we present a com-
putational modelling approach for simulating a magnetic separation
process, typically employed in the beneficiation of W and Ta minerals.

Commercially, W and Ta are often extracted from pegmatite-type
rock deposits, which are composed of several mineral groups. Among
these groups, wolframite (Fe,Mn)WO4 is the chief source of W, while Ta
is mainly contained in the columbite-tantalite (Fe,Mn)(Nb,Ta) O2 6 mi-
neral group. The presence of these mineral groups in the mined rock
deposits is generally of low-grade nature and therefore the ore must be
significantly comminuted to liberate the minerals prior to a separation
process, resulting in very fine feed particles. Additionally, wolframite
and columbite-tantalite (coltan) are generally characterized as weakly
ferromagnetic minerals, with a mass susceptibility range of

× −0.3 10 6– × − −1.2 10 m kg6 3 1 and × −22.1 10 6– × − −37.2 10 m kg6 3 1, re-
spectively. Due to the weak magnetic response of these minerals –
further diminished by the fine size of mineral particles – low and
moderate intensity magnetic separation processes are not suitable for
the beneficiation of such minerals and instead wet high intensity
magnetic separators (WHIMS) find prevalent industrial usage.

Also referred as the high gradient magnetic separator (HGMS), a
WHIMS employs a matrix, which acts as a magnetized filter when ex-
posed to an external magnetic field. The surface topology of the matrix
is intentionally kept irregular (e.g., with sharp regular asperities, wires,
etc.) to have an irregular magnetic field with localized field gradients
within the matrix. When the feed material flows through the matrix, the
gradients in the magnetic field produce a force imbalance on the
magnetic particles in the feed, forcing them to move towards the sur-
face of the matrix and ultimately getting deposited there. The non-
magnetic particles pass through the matrix unhindered. Once the feed is
stopped, the magnetic field is removed and the matrix is rinsed to
collect the magnetic material. In a batch operation, the matrices are
placed in a rotating disc arrangement which moves them continuously
between regular magnetization and rinse cycles. The Jones separator is
a well known example of a WHIMS.

Although some experimentally motivated mathematical models
such as Corrans and Levin (1979), Tucker (1994), and Liu et al. (2008)
exist in literature for WHIMS, their application remains restricted to the
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estimation of mineral recovery as a function of various process para-
meters. A detailed representation and understanding of the underlying
physical process remains outside the scope of such models. A typical
WHIMS involves multiple interacting physical phenomena, among
which electro-magnetism, fluid dynamics, particle kinetics and multi-
body contact are the dominant ones. Therefore computational model-
ling approaches in a coupled-field framework are increasingly being
adopted for the detailed analysis of WHIMS. In Okada et al. (2005), the
authors propose a computational fluid dynamics (CFD) based approach
for modelling the fluid flow and the magnetic field to estimate the
deposition of magnetic particles on magnetized wires. The magnetic
field is considered steady and the influence of accumulating particles on
the underlying magnetic and flow field is not considered. Another CFD
based approach that uses the volume of fluid (VOF) method to estimate
the distribution of magnetic and non-magnetic particles in a triangular
matrix is presented in Mohanty et al. (2011). The magnetic field,
though is obtained analytically by modelling the magnetic plates with a
series of magnetic dipoles. The boundary element method (BEM) for
CFD analysis coupled with an analytically obtained magnetic field and a
Lagrangian particle tracking approach, as shown in Ravnik and
Hriberšek (2013), offers a computationally less expensive approach for
modelling magnetic separation processes. However, its application is
restricted to laminar flow problems with simple geometries. An effort to
numerically solve most of the dominant fields involved in HGMS is
summarized in Lindner et al. (2013). Here, the discrete element method
(DEM) is employed to identify and determine individual particle tra-
jectories in a fluid and a magnetic field, which are modelled through
CFD and finite element method (FEM), respectively. A similar frame-
work was also employed for modelling a low intensity magnetic se-
parator (LIMS) in Murariu (2013). DEM provides an accurate re-
presentation of individual particles and a framework for including
inter-particle dynamics. However, the dynamic behavior of the under-
lying magnetic field due to increasing particle accumulation is not re-
tained in the simulation since the magnetic field is determined con-
sidering a domain without particles.

In this article, we present a novel computational modelling frame-
work that inherently retains the ability to model the influence of
magnetized particles on the surrounding magnetic field. We feel that
such a description is necessitated to accurately model and understand
the often encountered operational difficulty of matrix blockage in an
industrial WHIMS (Corrans and Levin, 1979). In a magnetic field,
magnetized particles tend to accumulate on top of each other and an
excessive buildup leads to the choking of the matrix, which conse-
quently leads to a short-circuited magnetic field. The separation effi-
ciency of a clogged matrix is significantly low and the entire process
suffers until the matrix is properly rinsed. Such a handicap can effec-
tively be identified and rectified at the matrix design stage through
detailed computational simulations corresponding to the operating
conditions. Additionally, a model that adequately reflects the separa-
tion dynamics of a WHIMS can be implemented in the machine and the
process control to prevent losses in product, as well as in process effi-
ciency.

To simulate the variations experienced by an otherwise steady
magnetic field in a WHIMS matrix due to the presence of magnetic
particles, we propose an entirely continuum based representation of all
the involved fields. In this context, the electro-magnetic field is ob-
tained through the numerical solution of the Maxwell’s equations ex-
pressed in the form of a magnetic vector potential, while the particle
geometry and movement is identified using the interface capturing level
set approach. The entire continuum is discretized with finite elements.
To effectively capture the jumps in the magnetic fluxes across different
interfaces (matrix-air, matrix-water, water-particle), we have adopted

the edge finite elements to solve the Maxwell’s equations. It is further
envisaged that the proposed formulation will be coupled with a stabi-
lized nodal finite element fluid flow solver (Brooks and Hughes, 1982;
Hughes and Mallet, 1986; Hansbo and Szepessy, 1990) in future for
flow field modelling. The proposed approach offers a novel framework
that can be easily extended to simulate and analyze the matrix blockage
phenomenon in WHIMS.

The remainder of this paper is organized in the following manner:
the mathematical framework for the proposed approach is laid out in
Section 2. This includes the governing differential equations expressed
in their strong and weak forms. Firstly, the governing equation for
modelling the magnetic field is introduced. This is followed by the level
set framework for particle identification and evolution. Using the de-
termined magnetic field and the identified particle representation, the
trajectory of the mineral particle is determined using the net resultant
force acting on the mineral particle. Results and observations based on
two numerical examples are discussed in Section 3. Finally, conclusions
are drawn in Section 4.

2. Continuum-based model

The mathematical framework for the continuum based approach is
summarized in this section. At the moment, two dominant fields are
considered. These include the magnetic field generated by an electric
current source and the magnetic particles that occupy the matrix cavity.

2.1. The magnetic field

The standard approach to numerically obtain a magnetic field is to
solve the Maxwell’s equations. In this regard, let us consider a region
comprising of two contiguous bodies B1 and B2 with permeabilities μi,
where =i 1,2. An extension to multiple contiguous bodies is trivial. The
static magnetic field within these media generated due to a source
current density J0 is governed by the Maxwell’s equations of the form:

B∇ × = ∀ ∈H J x, ,i i0 (1)

B∇ = ∀ ∈B x· 0 , .i i (2)

Here, Hi is the magnetic field intensity and Bi is the magnetic flux
density in the bodyBi. x represents a point where the magnetic field is
evaluated. The operation ∇ × u and ∇ u· represents the curl and di-
vergence operations, which for an arbitrary three-dimensional vector
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For a magnetically linear material, the magnetic field intensity and
the magnetic flux density are related by the following constitutive re-
lation:

=B Hμ .i i i (5)

It is pertinent to mention that μi is related to the volume magnetic
susceptibility χi through the relation = +μ μ χ(1 )i i0 , where μ0 is the
permeability of vacuum. At the interface where the two bodies meet,
the continuity of normal component of Bi and the tangential component
of Hi should be ensured, i.e,
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