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A B S T R A C T

A numerical model based on the discrete element method (DEM) was developed to study the compaction be-
haviour of non-spherical particles. Spheroidal and tetrahedral particles of different aspect ratios were ap-
proximated by a multi-sphere approach in which overlapping spheres were glued together to represent the
particle shapes. For the compactions of spheroidal particles, the effect of aspect ratio on the compaction was
mainly due to the difference in the initial packing. The compact compressive strength also increased with the
aspect ratio. For the tetrahedral particles, the non-convexity shape index was proposed to represent the degree of
inter-particle locking. With increasing non-convexity and thus inter-particle locking, larger consolidation pres-
sure was required to achieve the same density. The failure region upon the unconfined pressure also moved from
the bottom to the top with increasing non-convexity as force transfer was more difficult in the compacts. The
simulations also indicated that the bulk failure of the compacts was dominated by the shear-induced bond
breakage. The findings facilitate a better understanding of the relation of particle shape to the compaction
behaviour and compact strength.

1. Introduction

Preparation, transportation, storage, and associated operations may
account for 30–60% of the total delivered price of raw material in the
mining and mineral processing industry (Wills and Napier-Munn,
2006). Compaction is an important operation to consolidate ore fines
into assembled products for better handling with reduced cost. The
physical and mechanical properties of a compact are critical to the
performance of the compact in the following operations and applica-
tions such as transport, storage and sintering (Alderborn et al., 1988;
Darvell, 1990; Fell and Newton, 1970; Podczeck, 2012). Better under-
standing the relationship between consolidation pressure and compact
properties is critical to the design and optimisation of the process
(Abdel-Ghani et al., 1991).

Numerical modelling based on the discrete element method (DEM)
has been used to link the microscopic interactions between particles
with the macroscopic property of a compact, such as the effect of me-
chanical properties of particles (Hassanpour and Ghadiri, 2004; Samimi
et al., 2005), particle-wall friction induced inhomogeneity (Foo et al.,
2004), evolution of compact structure (Sheng et al., 2004) and the ef-
fects of moisture, particle shape and particle size (Skrinjar and Larsson,

2004, 2012; Thakur et al., 2014). Recently we conducted a DEM study
of the compressive strength of iron ore compacts (He et al., 2017; He
et al., 2015). The simulated stress-strain responses were comparable
with those observed from the physical experiments. As the DEM treats
particles individually and explicitly considers the particle character-
istics, material properties and the inter-particle forces, it offers an ef-
ficient way to obtain micro-mechanical insight into the bulk behaviour
of compaction.

In mineral processing, ore particles are often non-spherical and
particle shape has been demonstrated to have a strong influence on the
mechanical behaviour in particle packing (Donev et al., 2004; Villarruel
et al., 2000), compaction (Rothenburg and Bathurst, 1992; Ting et al.,
1995) and flow Cleary and Sawley, (2002). For example, in the biaxial
compression of elliptical particles, much larger strength was observed
compared to that of disk-shaped particles (Rothenburg and Bathurst,
1992). Ting et al. (1995) observed that the shear strength of a 2D as-
sembly of ellipse shaped particles increased with particle angularity.
The enhanced shear strength was attributed to the rolling resistance due
to particle inter-locking. Chung and Ooi (2006) obtained a better
agreement with experimental results in the bulk response when the
particle shape was considered under confined compression. Recently,
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Wiacek et al. (2012) observed that the transfer of the vertical pressure
was sensitive to the aspect ratio of elongated particles in the uniaxial
compression. However, little effort has been devoted to investigating
the mechanical response and strength of non-spherical particle com-
pacts under the unconfined axial compression.

This study is to develop a DEM model to study the compaction of
two types of non-spherical particles, spheroidal and tetrahedral parti-
cles, of different shape factors. The focus will be mainly on the effect of
particle shape on compact structure and strength. A multi-sphere ap-
proach is used to approximate the particle geometry. The model is
firstly validated against the literature data and then extended to study
their behaviour in the die and unconfined compactions.

2. Model description

The translational motion of a non-spherical particle i with mass mi

and inertial tensor Ii is defined based on its mass centre and the rota-
tional motion obeys the Euler equations in body-fixed coordination
system, given by,

= +d
dt
v F gm mi

i
i i (1)

+ × =d
dt

I I Mω ω ( ω )i
i

i i i i (2)

where vi and ωi are, respectively, the translational and angular velocity
with respect to the mass centre. Fi is the sum of all externally applied
force acting on the particle, including the normal contact force Fij

n,
tangential contact force Fij

t , capillary force Fij
cap and the bonding forces

Fij
b when a bond is present between the two particles. g is the gravity

acceleration. Mi is the corresponding moment, including the moment
Mij

t caused by tangential force and the moment Mij
b induced by the

tangential bonding force and bond bending/torsion. Fig. 1 shows the
schematic illustration of forces between elemental spheres.

The particles are modelled as an elastic-perfectly plastic body. The
normal contact is described by the Hertz model for the elastic de-
formation and the model developed by Thornton and Ning (1998) for
the plastic deformation. The tangential contact behaviour is governed
by the model of Mindlin and Deresiewicz (1953). A bonded particle
model (Potyondy and Cundall, 2004) was adopted to account for the
effect of solid bonding and mechanic interlocking due to its simple,
linear form which can be easily implemented into the model. More
importantly, the model has been demonstrated to be able to reproduce

the brittle fracture observed in the experiments (Cho et al., 2007; Yoon,
2007). In the present study, the bonding area is assumed to be the same
as contact area between the particles. The bonds can be broken by ei-
ther tensile or shear.

For non-spherical particles, the calculation of the mass and the
moment of inertial tensor relative to the principal axes are very com-
plex. In the present study, they are obtained using SolidWorks, a CAD
software and fed into the DEM model as input parameters. To avoid
updating the moment of inertia, the torques and angular velocities are
transformed between the space-fixed coordination system and the body-
fixed coordinate system via a transformation matrix which is defined by
the Euler angles ϕ θ ψ( , , ) as,
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To determine the rotational motion, the so-called quaternion method
are used to represent the particle orientation to avoid the problem of
gimbal lock involved in the calculation of the Euler angle (Dziugys and
Peters, 2001).

Table 1 lists the equations used for the calculation of these forces.
The details can be found in our previous study (He et al., 2015).

3. Simulation conditions

This work investigated the compactions of spheroidal (Fig. 2) and
tetrahedral (Fig. 3) particles. The particle shape was approximated
using a multi-sphere approach, in which the elemental spheres are ri-
gidly connected so that the contact detection method for spherical
particles can be readily adopted (Favier et al., 1999). Each elemental
sphere was defined by its radius and position relative to the mass centre
of the particle. The contact detection between non-spherical particles is

Fig. 1. Schematic of the forces acting on sphere i from contacting sphere j and pendular
liquid-bridge linked sphere k.

Table 1
Equations used to calculate forces in this work.
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where = +∗R R R1/ 1/ 1/i j, with Ri and Rj being the radius of two particles in contact,
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j, with E and ν the Young’s Modulus and Poisson’s ratio,

respectively; δn and δt represent the overlap in normal and tangential directions;
= ∗δ μ G aF3 | |/16t,max t ij

n with μt the sliding friction, a the radius of contact area and ∗G is

the effective shear modulus defined as = − −∗ ∗G E ν ν(1 )/(4 2 ); μr is the rolling friction;
̂ =ω ω /|ω |i i i with ωi the angular velocity; For inter-particle bonding,
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cremental force vector and the incremental displacement vector. = k A k A k J k IK{ } { , , , }n t t n T

is the stiffness matrix, in which kn and kt are the bond normal and tangential stiffness,
=A πRb

2, =I πR /4b
4 and =J πR /2b

4 with Rb the bonding radius and σb the bonding

strength.
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