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ARTICLE INFO ABSTRACT

Deep learning constitutes a significant recent advance in machine learning and has been particularly successful
in applications related to image processing, where it can already surpass human accuracy in some cases. In this
paper, the use of a convolutional neural network, AlexNet, pretrained on a database of images of common
objects was used as is to extract features from flotation froth images. These features could subsequently be used
to predict the conditions or performance of the flotation systems. Two case studies are considered. In the first,
froth regimes in an industrial flotation plant could be identified significantly more reliably with the features
generated by AlexNet than with previous state-of-the-art approaches, such as wavelets, grey level co-occurrence
matrices or local binary patterns. In the second case study, the arsenic concentration in the batch flotation of
realgar-orpiment-quartz mixtures could be predicted more accurately than was possible with features extracted
by wavelets, grey level co-occurrence matrices, local binary patterns or by use of colour. These results suggest
that feature extraction with convolutional neural networks trained on complex data sets from other domains can
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serve as more reliable methods than previous state-of-the-art approaches to froth image analysis.

1. Introduction

Froth flotation is well established as the most widely used and im-
portant separation technology in mineral processing (Fuerstenau et al.,
2007). Selective floating of mineral species in an aerated pulp can be
achieved for a wide range of minerals and particle sizes. Although
considerable advances have been made in the modelling and under-
standing of flotation systems, control of froth flotation processes is still
complicated by the fact the key performance indicators of the process,
namely recovery and grade, can generally not be measured online
(Shean and Cilliers, 2011).

However, images of the froth itself is a rich source of information
regarding the operational state of the flotation system (Aldrich et al.,
2010) and froth image analysis provides a viable approach to the de-
velopment of sensors that can be used in online control systems, such as
discussed by Shean and Cilliers (2011). These sensors can infer the state
of the process (Aldrich et al., 1997; Xu et al., 2015; Zhang et al., 2016)
or in some cases can be used to estimate grades online, such as esti-
mating the ash content in coal (Cruz and Adel, 1998; Zhang et al., 2014;
Tan et al., 2016), platinum in PGM flotation (Marais and Aldrich, 2010,
2011a, 2011b), as well as base metals (Kaartinen and Koivo, 2002;

Duchesne et al., 2003; Kaartinen et al., 2006a, 2006b; Runge et al.,
2007).

The basic approach to accomplish this generally consists of two
stages. In the first stage, features are extracted from the froth image and
in the second stage these features are used as predictors for some froth
condition or key performance indicator. The feature engineering pro-
cess in the first stage could be as simple as capturing the colour of the
froth, as an indication of the mineral species being floated, or it could
be more complicated, where the condition of the froth can be inferred
from the bubble size distribution, the froth viscosity, stability, etc.

This assumes the availability of reliable knowledge with regard to
the underlying physical mechanisms of the flotation process that may
not be realistic. Therefore feature extraction in the first stage may not
necessarily capture all the relevant information required by the model,
as it may be difficult to know a priori what features would be reliable
predictors of the froth state.

For example, when the goal is to estimate the concentration of the
species being floated, the colour of the froth may not necessarily give a
reliable indication of the concentration of the species in the froth, as
multiple species may contribute to the colour. The same goes for other
features, such as the froth stability that may be increased by increased
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Fig. 1. Development of froth image models, using traditional methods
(top) and deep learning algorithms (bottom).
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Fig. 2. Typical architecture of a convolutional neural network.

solids loading, but which again may not necessarily be a reliable in-
dication of the mineral species in the froth. Under these circumstances,
feature engineering can become a costly and cumbersome trial and
erTor process.

The second stage, following feature extraction is comparatively in-
expensive, with a suitable machine learning algorithm applied to con-
struct a model that can predict the labels associated with the froth
images. These labels can be discrete, e.g. to identify different froth
classes or operating conditions, or they can be continuous, or numeric,
to indicate the concentrations of reagents or mineral species in the froth
or some other quantitative key performance indicator of the flotation
cell. Models based on artificial neural networks have been popular
choices in this regard (Moolman et al., 1995; Marais and Aldrich, 2010;
Jahedsaravani et al., 2014).

In principle, a better approach would be to directly and auto-
matically guide the feature extraction process based on the predictive
power of the features in the model itself, as indicated in Fig.1. In this
figure, the traditional two-stage approach (top) is contrasted with a
single stage approach, where feature extraction is done internally by
the model itself (bottom).

In this paper it is shown that supervised feature extraction, i.e. the
extraction of features to maximise image recognition, can yield sig-
nificantly better results than what could be achieved with features not
directly extracted to achieve the same goal. In addition, it is shown that
this can be achieved by making use of convolutional neural networks
that have been pretrained on image data from a different domain.

Image analysis with convolutional neural networks is briefly dis-
cussed in the following section. In Section 3, the analytical metho-
dology is summarised, together with four other algorithms that are used
here as a basis for comparison regarding the performance of the neural
network feature extractor. In Sections 4 and 5, application of these
algorithms to two different froth systems are considered. Further dis-
cussion and conclusions are provided in Sections 6 and 7.

2. Image analysis with convolutional neural networks

Convolutional neural networks (CNNs) belong to a class of deep,
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feed-forward artificial neural networks that have successfully been
applied to image analysis. They are biologically inspired variants of
multilayer perceptrons that emulate the animal visual cortex, the most
powerful visual processing system in existence.

The main advantage of CNNs over traditional fully connected neural
networks is that they have comparatively fewer parameters to learn.
Convolutional layers with small kernels are an effective means of ex-
tracting high level features that are fed to fully connected layers.
Training of CNNs is accomplished by use of backpropagation and sto-
chastic gradient descent (Rumelhart et al., 1986).

CNNs s typically consist of the following types of layers, as indicated
in Fig.2. The first is an input layer, where data (images) are presented to
the network. This is followed by convolutional layers that contain a
series of fixed sized filters to perform convolution on the image data to
generate so-called feature maps. These filters can highlight some pat-
terns helpful for image characterization, such as edges and textures.

Pooling layers summarise the data by sliding windows across the
feature maps and applying some linear or nonlinear operations, such as
calculating the local mean or maximum values, to ensure that the
network focuses only on the most important patterns. Fully connected
layers are used to interpret patterns generated by the previous layers. In
addition to these, rectified linear units can be used to facilitate training
of CNNs by applying non-linear functions to the outputs for faster
convergence. Finally, so-called loss layers are used to specify how
network errors are penalised during training of the network and can
include loss functions, such as softmax and sigmoidal cross-entropy.

As deep neural networks, CNNs can have a very large capacity to
capture complex features from image data and over the last few years,
these networks have emerged as state-of-the-art approaches to image
recognition, often outperforming traditional approaches by a large
margin (Simonyan and Zisserman, 2014; Kheradpisheh et al., 2016).

The annual ImageNet Challenge (Russakovsky et al., 2015) is a good
example of this. In this competition, some 1.2 million images are
available to train models to recognise any of a 1000 everyday objects in
diverse settings, while testing is done on 100,000 images not previously
seen by the model. The error rates of the winners over the last seven
years are shown in Fig. 3.
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