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a b s t r a c t

The Conditional Quadrature Method of Moments (CQMOM) and the Direct Quadrature Method of
Moments (DQMOM) are compared with Direct Simulation Monte Carlo (DSMC) for the description of
gas bubble coalescence, breakage and mass transfer with the surrounding continuous liquid phase.
CQMOM and DQMOM are both moment methods based on the idea of overcoming the closure problem
by using a quadrature approximation. The methods are compared and performances evaluated for spa-
tially homogeneous and inhomogeneous systems. Eventually CQMOM and DQMOM are implemented
in a commercial CFD code to simulate a realistic two-dimensional bubble column. Particular attention
is paid to the impossibility of conserving moments with DQMOM in the presence of numerical diffusion.
To cure this problem a fully-conservative DQMOM formulation is presented and tested. The relationship
between the two methods is investigated, showing that under particular conditions CQMOM is identical
to DQMOM. The different methods are employed under a number of different conditions including very
fast chemical reactions, in order to highlight if the problem of bubble coalescence, breakage and mass
transfer really needs a bivariate population balance to be tackled and what is the optimal number of
nodes for the quadrature approximation.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Disperse systems are usually characterized by complex interac-
tions between the continuous phase and the disperse phase, and
between the different particles/elements constituting the disperse
phase. These interactions can be classified as continuous or
discontinuous depending on the time and spatial scale chosen to
observe the system: a continuous process will result, considering
an infinitesimal time scale, in an infinitesimal change of properties
of the dispersion, otherwise a discontinuous event brings to a finite
change of the system status. The Generalized Population Balance
Equation (GPBE), the mathematical framework used to describe
these systems, is a generalization of the classical Population Balance
Equation (PBE) (Ramkrishna, 2000), that tracks their evolution not
only in physical space, but also in the space of the properties of
the population (called internal coordinates). We are interested in
analyzing different approaches, capable of describing industrial
scale systems characterized by strong spatial heterogeneity and a
high degree of poly-dispersity in the internal coordinates with an
optimal balance between accuracy and computational costs. In this
work the focus in on gas–liquid reactors and bubble columns.

Most of the developed methods for solving the population bal-
ance equation belong to one of the following groups: classes or sec-
tional methods, Monte Carlo methods and moment-based
methods. The first group contains all those methods in which the
space of internal coordinates is discretized: the Classes Methods
(CM) were firstly developed for the solution of univariate cases,
in which the state of the population is characterized by a single
property or variable (Kostoglou and Karabelas, 1994; Vanni,
2000) and were recently extended to multivariate cases, in which
two or more variables are needed for describing the disperse sys-
tem (Kumar et al., 2008; Nandanwar and Kumar, 2008). The main
drawback of these methods is the high computational costs re-
quired to obtain an acceptable accuracy, when also the inhomoge-
neities in the physical space are taken into account. It is worth
mentioning that Finite Volume Methods (Gunawan et al., 2004)
and Finite Element Methods (Godin et al., 1999) belong to the
group of classes methods and hence they, too, show the aforemen-
tioned limitations in the applicability to realistic inhomogeneous
cases.

Monte Carlo Methods (MCM) are based on the solution of sto-
chastic differential equations that are able to reproduce a finite
number of artificial realizations of the system under investigation
(Zhao et al., 2007). In order to have a solution very close to reality,
the number of artificial realizations is often very high, resulting in
unsustainable computational costs. For this reason, these methods
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are usually employed for validation (Zucca et al., 2007) in simpli-
fied cases.

The Method of Moments was originally formulated and applied
to particulate systems in the pioneering work of Hulburt and Katz
(1964). The idea behind this method is the integration of the PBE in
the space of the internal coordinates, leading to a set of equations
that can be solved only for some lower-order moments. For realis-
tic processes, it is not always possible to write the governing equa-
tions in terms of the moments themselves, generating what is
known as ‘‘closure problem’’; many closures were proposed in or-
der to overcome this issue and our work is focused on a particular
class of methods called Quadrature-Based Moments Methods
(QBMM), in which the Number Density Function (NDF) represent-
ing the population is assumed to be a summation of some basis
function (very often Dirac delta functions) centered on the zeros
of orthogonal polynomials of a Gaussian Quadrature. Although
the quadrature approximation is always very accurate comparison
with alternative methods (Marchisio et al., 2003b; Zucca et al.,
2007) is always suggested. In general, acceptable accuracy can be
achieved with a very low number of nodes (N 6 4) (Marchisio
et al., 2003b; Marchisio and Fox, 2005). Moreover, the great advan-
tage is that QBMM are particularly suitable to be coupled with CFD
solvers, as demonstrated by Marchisio et al. (2003a), Fan et al.
(2004), Zucca et al. (2006), Petitti et al. (2010), and Buffo et al.
(2012).

QBMM can be subdivided into two main groups: in the former
the evolution of moments is calculated and the quadrature approx-
imation is determined through a specific inversion algorithm; in
the latter the quadrature (in terms of its weights and nodes) is di-
rectly evolved in space and time by mimicking the evolution of
some moments. For univariate PBE, these two methods correspond
to the Quadrature Method of Moments (QMOM) (McGraw, 1997)
and to the Direct Quadrature Method of Moments (DQMOM)
(Marchisio and Fox, 2005), respectively. For multivariate PBE, as re-
ported in Marchisio and Fox (2005), DQMOM can be easily ex-
tended, while QMOM, with its standard inversion algorithms,
cannot be used as it is not capable of dealing with mixed moments,
that arise from multivariate populations. Among the recently pro-
posed inversion algorithms for multivariate problems (Brute-Force,
Wright et al. (2001), Tensor Product, Yoon and McGraw (2004a),
Yoon and McGraw (2004b), and Fox (2009a) and Conditional Quad-
rature Method of Moments, CQMOM, Yuan and Fox (2011))
CQMOM was proved to perform excellently. In this work, CQMOM
will be compared to DQMOM in order to highlight the pros and
cons of each method and establish the better procedure for highly
heterogeneous and poly-disperse realistic gas–liquid systems.

As far as the coupling to Computational Fluid Dynamics (CFD)
codes is concerned, some issues for both methods still need to be
addressed. As it is well-known, ‘‘moment-corruption’’, namely
the generation of invalid sets of moments, may arise with
QMOM/CQMOM when high-order spatial discretization schemes
are used for transporting the moments of the NDF (Wright,
2007). A set of moments is valid if there exists a NDF resulting in
that specific set of moments: in this way the calculated nodes
are always in the domain of internal-coordinate space and the
weights are always positive. If the inversion algorithm were used
with invalid moment sets, unrealizable quadratures would be cal-
culated (because no realizable NDF corresponds to an invalid set),
jeopardizing the stability of the simulation. Wright (2007) pro-
posed an iterative algorithm to correct a corrupted set of moments,
based on the convexity principle, but this algorithm is only capable
to restore the set, not to prevent and solve the corruption problem.
Recently Vikas et al. (2011a) introduced a class of high-order
numerical schemes, based on the kinetic finite volume schemes,
that guarantees the realizability of a set of moments. DQMOM does
not exhibit the corruption problem (Marchisio and Fox, 2005),

since the resulting moments tracked by the method will always
be realizable as long as the weights are non-negative, but, under
certain conditions, the method may be unable to calculate properly
the moments. In fact, if the moment transport equation is purely
hyperbolic (i.e. pure advection of the NDF) or there are spatial dis-
continuities in the quadrature, the spatial continuity assumption
used to derive the method is no more valid and DQMOM fails
(Mazzei et al., 2010, 2012). Even if the spatial solution is smooth,
problems may arise whenever the moment transport equation
contains spatial diffusion terms that are smaller than or compara-
ble with the numerical diffusion that every Finite-Volume scheme
(FV) introduces. In fact, in this case the correction proposed by
Marchisio and Fox (2005) is difficult to be calculated since the
numerical diffusion coefficient cannot be determined accurately.
Very recently, Donde et al. (2011a,b,c) suggested a slight modifica-
tion of the DQMOM formulation that seems to address the afore-
mentioned problems in the case of turbulent reactive flows
described by LES models, wherein the turbulent diffusion term is
typically small compared to the convection term. In this work,
we will formulate this method in a general way (labeled in what
follows as DQMOM-Fully Conservative or DQMOM-FC) and explain
the reason why this method is successful by comparing it with
CQMOM.

Although the methodology discussed in this work has general
validity, here we focus on turbulent gas–liquid systems, in which
spatial inhomogeneities, bubble collisions and mass transfer play
an important role in the determination of the state of the system.
In such a system the mass transfer rate strongly depends on the
size of the bubbles (mass transfer from small bubbles is faster than
for larger ones) and a second internal coordinate related to the
bubble composition is needed in addition to bubble size, in order
to determine accurately the evolution of the population. The
remainder of the paper is the following: Section 2 contains a very
short introduction to the multivariate Population Balance Model-
ing for turbulent gas–liquid systems. In Section 3, the two multi-
variate solvers CQMOM and DQMOM will be formulated for
homogeneous systems and discussed in details. In Section 4, we
will introduce the spatial inhomogeneities and the implications
for both methods. In Sections 5 and 6 some numerical experiments
carried out to compare the two methodologies will be explained
and discussed.

2. Population Balance Modeling for gas–liquid systems

A generic turbulent gas–liquid system can be thought of as a
dispersion of bubbles, each one characterized by its size L, compo-
sition /b and velocity Ub. In this work, we are interested in the
description of an isothermal air–water system, in which only oxy-
gen transfers between air and water (i.e., vector /b becomes a sca-
lar quantity /b representing the total number of moles of oxygen in
the bubble).

The entire population of bubbles can be described by a smooth
and continuous function ~n, called Number Density Function (NDF),
differentiable with respect to time, physical space and internal-
coordinate space (i.e., the space generated by the considered
properties of the population), in such a way that the following
quantity:

~nðL;/b;Ub; x; tÞdL d/b dUb dx; ð1Þ

represents the expected number of bubbles with size between L and
L + dL, composition between /b and /b + d/b, velocity between Ub

and Ub + dUb contained inside the physical volume dx.
Referring to the classical theory of population balances (Ram-

krishna, 2000; Vikas et al., 2011b), it is possible to write a continu-
ity statement for the NDF. This equation is called Generalized
Population Balance Equation (GPBE):
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