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a b s t r a c t

We analyze theoretically gas–liquid flow in a circular capillary tube, the inlet of which is connected to a
constant-pressure liquid reservoir. Based on previously derived analytical solutions, we present for the
first time comprehensive, two-dimensional phase diagrams, which predict the flow scenario from only
two nondimensional numbers: a nondimensional pressure and a nondimensional gravity parameter.
Diagrams are developed for both a constant and a dynamic contact angle where in the latter case the non-
equilibrium Young force depends monotonically on the capillary number. The diagrams subdivide the
entire parameter space into regions that are associated with either liquid withdrawal, liquid infiltration,
or metastable and stable equilibrium states.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Two-phase flow in capillary tubes occurs in engineering appli-
cations such as microfluidics. However, flow in capillary tubes is
also indicative of flow in geometrically and topologically much
more complex porous media such as soil, water filters, and fuel
cells. Often flow is induced by a constant-pressure liquid reservoir
that is connected to the tube inlet while the other end of the tube is
connected to a constant-pressure gas reservoir, e.g., the atmo-
sphere. Infiltration into soil due to ponding of a thin film of water
is, for example, also frequently modeled by imposing a constant-
pressure boundary condition for the water on the soil surface.

Traditionally two-phase flows in circular capillary tubes have
been described by the Lucas–Washburn theory (Green and Ampt,
1911; Lucas, 1918; Washburn, 1921). This theory is based on the
following assumptions:

1. Inertial forces can be neglected (small Weber number).
2. The viscosity of the gas can be neglected.
3. The pressure drop in the liquid can be described by Poiseuille’s

equation for axi-symmetric flow in a circular tube, thereby
neglecting deviations from the parabolic velocity profile at the
tube inlet and the gas–liquid interface.

4. The tube radius R is small enough such that gravity does not
affect the shape of the gas–liquid interface, i.e., the interface
has the shape of a spherical cap.

5. Contact angle h is constant.

With these assumptions, flow is mathematically described by
the following ordinary differential equation:

pl;0 � pg

l
þ 2c

Rl
cos h ¼ 8g

R2
_lþ qg sin W ð1Þ

where l P 0 is the distance between the tube inlet and the gas–li-
quid interface, pl;0 is the pressure of the liquid reservoir, pg is the
constant gas pressure, c is interfacial tension, h is the contact angle
that is measured in the liquid, g is dynamic viscosity of the liquid, q
is the density of the liquid, g is the gravitational acceleration, and W
is the angle between the horizontal axis and the capillary tube.
When the tube points downwards or upwards as seen from the tube
inlet, 0� > W > �90� or 0� < W 6 90�, respectively.

The flow scenarios of downward liquid infiltration, capillary
rise, and horizontal infiltration appear to be the flow scenarios that
received the most attention when it came to the application of the
Lucas–Washburn theory. Nonetheless it has been understood that
the Lucas–Washburn theory can also be used to describe other
types of flow such as liquid withdrawal (Blake and De Coninck,
2004). Our recent work revealed that all together 10 different flow
scenarios may occur if one accounts for a dynamic contact angle.
These flows differ in the orientation of the flow (horizontal, up-
ward, or downward), the acceleration (positive, negative, or zero),
and the direction of the flow (infiltration or withdrawal). The
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model for dynamic contact angle assumed the nonequilibrium
Young force to be a function of the capillary number:

cos heq � cos h ¼
f ðg_l=cÞ for liquid infiltration

�f ð�g_l=cÞ for liquid withdrawal

8><
>: ð2Þ

where f P 0 is a nondimensional function that represented either a
power law model or a polynomial. Note that the arguments of f are
nonnegative, because _l > 0 for liquid infiltration and _l < 0 for liquid
withdrawal.

Until only recently, no phase diagrams were available that al-
lowed one to predict which type of flow occurs depending on the
applied pressure, the fluid properties, the inclination angle of the
tube, and the tube radius. In light of this lack of knowledge, Hilpert
(2010b,c) developed such phase diagrams based on analytical solu-
tions (Asthana, 2002; Martic et al., 2002; Hilpert, 2009a,b,
2010c,a,b). These phase diagrams assumed a linear contact angle
model, f ¼ ag_l=c. For the initial condition lðt ¼ 0Þ ¼ l0 ¼ 0, these
phase diagrams were 2D, while for l0 > 0, they were 3D. In this pa-
per, we show that 2D phase diagrams can be developed for any
strictly increasing f P 0 with f ð0Þ ¼ 0. Since most physically-based
contact angle models are not linear (Blake and Haynes, 1969; Jiang
et al., 1979; Cox, 1986), this paper allows for more realistic predic-
tions of capillary flows.

2. Phase diagrams

The right hand side of Eq. (2) can be written as gðg_l=cÞ where

gðxÞ ¼ sgnðxÞf ðj x jÞ ¼ sgnðxÞf ðxsgnðxÞÞ ð3Þ

and sgn is the sign function. The function g inherits from the func-
tion f that it is strictly increasing and that gð0Þ ¼ 0. Eq. (1) can be
expressed in the following nondimensional fashion (Hilpert,
2010a,c):

4kðk0 þ CÞ ¼ P � gðk0Þ ð4Þ

where kðsÞ ¼ lðtÞ=R is the nondimensional interface position,
s ¼ tc=ðgRÞ is the nondimensional time, C ¼ qgR2 sin W=ð8cÞ is a
gravity number, k0 ¼ dk=ds is the nondimensional interface velocity,
and P ¼ Rðpl;0�pg Þ

2c þ cos heq is a nondimensional pressure which ac-
counts for the reservoir pressure and the equilibrium capillary
suction.

One can construct a 2D phase diagram in terms of the initial
interface velocity f0 :¼ k0ð0Þ and C based on previously derived
analytical solutions (Hilpert, 2009a,b, 2010a). Table 1 shows the
mathematical conditions for the occurrence of a flow scenario,
and Fig. 1a shows the resulting phase diagram. The drawback of
the f0 � C phase diagram is that it predicts the scenarios from

the initial interface velocity f0 which is hard to control experimen-
tally. For this reason we derive new 2D phase diagrams that de-
pend on the initial interface position k0 which is easier to control
experimentally than f0. The initial interface position can be in-
ferred from f0 as follows:

k0 ¼
P � gðf0Þ
4ðf0 þ CÞ ð5Þ

The challenge now is to express the conditions for the possible flow
scenarios listed in Table 1 in terms of k0 instead of f0.

For k0 > 0, we define the following two nondimensional
parameters:

bP ¼ P þ gðCÞ
4k0

bC ¼ Cþ gðCÞ
4k0

Using rigorous mathematical reasoning, the conditions from Ta-
ble 1 can be reformulated in terms of bP and bC which in turn de-
pend on k0. The second column in Table 2 shows these new
conditions, and Fig. 1b shows the corresponding phase diagram.
Appendix A.1 shows the corresponding mathematical derivation.
Although this derivation does not work for the case of constant
contact angle (f � 0), it follows from Hilpert (2010b, Fig. 4a) that
this case is still covered by the second column in Table 2 and
Fig. 1b. Note that the conditions in terms of f0 (see Table 1) are for-
mally quite similar to those in terms of k0 in that the conditions are
delineated by horizontal, vertical, one-to-one, and negative one-to-
one lines. This is why the bP � bC phase diagram is similar to the
f0 � C phase diagram.

For initial interface positions k0 ¼ 0 and the case of a dynamic
contact angle (f > 0), one can define the following new nondimen-
sional gravity parameter that allows one to predict the flow scenar-
ios from the conditions listed in the third column of Table 2 or from
Fig. 1c:

C
�
¼ gðCÞ

Appendix A.2 shows the corresponding mathematical derivation
from the conditions listed in Table 1.

For the sake of completeness, we also address 2D phase dia-
grams in case of a constant contact angle, f � 0, even though such
diagrams have already been presented in the literature. For k0 ¼ 0,
we redisplay in the fourth column of Table 2 the conditions derived
by Hilpert (2010c), and in Fig. 1d the corresponding phase diagram.
It turns out that the case k0 > 0, which was already addressed by
Hilpert (2010b) (using different independent variables to construct
a phase diagram), is also accounted for by our analysis of the case
k0 > 0 (see second column of Table 2 and Fig. 1b).

3. Discussion

Simple 2D phase diagrams (see Fig. 1) have been developed that
allow one to predict which type of two-phase flow occurs in capil-
lary tubes where flow is induced by a constant pressure reservoir.
Flow can always be predicted from a nondimensional pressure var-
iable and a nondimensional gravity number. The corresponding
conditions are listed in Table 2. The 3D phase diagrams for capil-
lary flow presented in Hilpert (2010b,c) have become obsolete, be-
cause they now have been replaced by 2D phase diagrams that
account for dynamic contact angle models which allow for any
monotonic dependence of the nonequilibrium Young force on the
capillary number.

To the best of our knowledge, some of the flow scenarios (e.g.
ADI, AHW, and AUW) have not been validated experimentally in

Table 1
Conditions for flow scenarios in terms of f0 and C.

Scenario Abbreviation Condition

Decelerating horizontal liquid infiltration DHI 0 ¼ �C < f0

Accelerating horizontal liquid withdrawal AHW f0 < �C ¼ 0
Equilibrium E0 E0 f0 ¼ �C ¼ 0
Equilibrium Eþ Eþ �C < f0 ¼ 0
Equilibrium E� E� f0 ¼ 0 < �C
Steady-state downward liquid infiltration SDI 0 < f0 ¼ �C
Steady-state downward liquid withdrawal SDW f0 ¼ �C < 0
Decelerating downward liquid infiltration DDI 0 < �C < f0

Decelerating downward withdrawal DDW �C < f0 < 0
Accelerating downward liquid infiltration ADI 0 < f0 < �C
Accelerating downward liquid withdrawal ADW f0 < �C < 0
Decelerating upward liquid infiltration DUI �C < 0 < f0

Accelerating upward liquid withdrawal AUW f0 < 0 < �C
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