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a b s t r a c t

Ore rocks are commonly identified as heterogeneous materials, that is, their various micro-structures are
characterized by inherent natural randomness. Reasonably, heterogeneity is an important factor that
controls damage initiation, fracture propagation, and in turn final breakage failure or fragmentation pro-
cess within raw rocks. This paper focuses on the internal spatial variability in terms of mineral distribu-
tion, and the objective is to numerically investigate the effects of different randomness feature of fine-
scale structure, as described by variable magnitudes of spatial correlation length parameter, on the roll-
ing compression induced breakage failure of individual rock specimen on a horizontal table. A simple and
direct algorithm was developed to generate specimens characterized by random fields of prescribed spa-
tial correlation, which are obtained by a weighted average of random fields without spatial correlation.
The finite element method with conversion to the smoothed particle hydrodynamics method was
adopted to simulate the progressive deformation, fracture and final breakage failure by roller compres-
sion. From parametric study results, it was found that the spatial correlation length parameter value
can significantly influence the breakage failure and the corresponding size reduction efficiency for ore
rock prisms. Specifically, the progressive fragmentation patterns, and the characteristic size of main bro-
ken pieces show obvious length value-related distribution features. The numerical study given in this
paper can definitely help understanding the pulverizing mechanism of various polycrystalline particles
in roller mills and the optimization of the grinding works for better efficiency.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In principle, quasi-brittle materials such as concrete and natural
ore rocks are usually characterized by heterogeneous fine-scale
structures. To begin with, natural mineral aggregates formed under
the process of metamorphism, weathering, transportation or sedi-
mentation are composed of various fractions of materials. Further-
more, existence of numerous random distributed micro-cracks and
tiny holes also contributes to the explicit non-homogeneity of
these materials. Nevertheless, the distribution pattern of macro
mechanical properties are by no means completely tangled or dis-
organized. It is noteworthy that there often exists spatial correla-
tion of local continuity in terms of material properties, which
means that mechanical properties of discrete elements are signifi-
cantly correlated with respect to spatial distance in the random
field.

In recent years, the randomness feature of natural geo-
materials has attracted much attention and many research works
have been carried out in the literature, particularly on the size
and shape effects of compression strength (Hudson et al., 1971;
Tuğrul and Zarif, 1999), rock fragmentation and failure modes
under static or dynamic loads (Liu et al., 2002; Villeneuve et al.,
2012), as well as development of variable digital image processing
(DIP) techniques for numerical representation of fine-scale hetero-
geneity (Kemeny et al., 1993; Lenoir et al., 2007). Even though the
contribution of spatial correlation character has been omitted,
almost all of these studies have clearly shown the significance of
fine-scale heterogeneity character on the prediction of fracture
development and final failure patterns.

While in terms of microstructures in multiphase composites,
spatial correlation of local continuities cannot be overlooked. For
example, different concrete batches and the variability of work-
manship may lead to spatially varying concrete quality and con-
crete cover, which will as a consequence influence the likelihood
and extent of corrosion-induced cracking of a concrete surface
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(Vu and Stewart, 2005). In the region of biological and non-
biological structures, semi-flexible fibre networks exhibit long-
range power-law spatial correlations of the density and elastic
properties which can be simulated by the stochastic finite element
techniques (Hatami-Marbini and Picu, 2009; Heussinger and Frey,
2006). In this regard, to investigate the mechanical behaviour of
natural or artificial materials, the existence and resulting effects
of spatial correlation should be underlined to a certain extent.
Griffiths and Fenton (2004) developed random finite element
method (RFEM) incorporating such a spatial correlation length
character of soil strength properties for slope stability analysis.
Their findings indicate that simplified probabilistic analysis ignor-
ing spatial variability can lead to unconservative estimates of the
probability of failure. Tang et al. (2010) considered the spatial cor-
relation character of concrete materials based on an equivalent
probabilistic model. Their results clearly show that when the spa-
tial correlation of the fine-scale material property is weaker, a
comparatively larger scatter is shown in the softening stage
response and in the failure pattern during the uniaxial compres-
sion tests. Interestingly, the mean values of compressive strength
present only insignificant changes.

In this paper, to simulate the local distribution continuity of
fine-scale mineral components within ore rocks, an efficient and
practical algorithm was developed for generating three dimen-
sional random fields of spatial correlation, which is an extension
of the method by the authors (Tang et al., 2014). Coal material
was taken as an instance in this study, and typical cubic coal sam-
ples were generated by the method considering an impurity com-
ponent of variable spatial correlation length factors. Parametric
numerical studies of rolling compression tests were conducted
on the generated numerical coal prisms, and the effects of variable
spatial correlation length factors of coal material on its pulverizing
induced breakage response were investigated.

2. Numerical algorithm for spatial correlation

The main implementation flowchart for generating numerical
samples that are characterized by spatial correlation feature is
shown in Fig. 1. Not losing generality, a particular case of ore mate-
rial made up of two constituent components was chosen for the
purpose of simplicity. Firstly, the algorithm for one-dimensional
case was described, and then an extension to a more general
three-dimensional case was presented.

2.1. One-dimensional case

Firstly, an integer array A of given length n, comprising ele-
ments ai = ±1, i = 1, 2, . . ., n, was generated in complete random
order, in which 1 and �1 indicate two constituent components
respectively. The corresponding volume fraction of each compo-
nent is prescribed as w (0 < w < 1) and 1 � w respectively. Hence,
the statistical expectation value can be derived as follows:

haiaiþdi ¼ 1
n

Xn
i¼1

aiaiþd ¼
1; d ¼ 0
2w� 1; d–0

�
ð1Þ

where d indicates the spatial distance between elements ai and ai+d.
In order to introduce spatial correlation, a Markovian correla-

tion function, f ðkÞ ¼ e�
k
H was adopted in this study. As introduced

in references (Tang et al., 2010; Griffiths and Fenton, 2004), the
chosen correlation function is characterized by exponentially
decaying, where H denotes the spatial correlation length parame-
ter and |k| indicates the effective distance of the centroids of two
number elements. The H parameter represents the correlation
degree between elemental points in space, here equivalently as
the distance along the one-dimensional axis. A smaller H factor

indicates that the random field varies smoothly whereas a larger
value implies a more intense variation.

Secondly, a new array B representing spatial correlation can be
formulated based on linear products of A elements, the correlation
function f(k) above and undetermined coefficients. The comprising
elements of B array are defined as:

bi ¼
Xn
k¼�n

cjkjaiþkf ðjkjÞ ð2Þ

where ck (k = 0, 1, . . ., n) denotes the unknown coefficients which
are to be determined based on the above-mentioned spatial corre-
lation function f(k) in the following step, and they form the C array
in Fig. 1. To endow the B array elements with spatial correlation,
here, one-dimensional, a sequence of nonlinear equations on the
basis of correlation functions can be formulated:

hbibiþki ¼ 1
n

Xn
i¼1

bibiþk

¼ 1
n

Xn
i¼1

Xn
p¼�n

cpaiþpf ðpÞ
 ! Xn

q¼�n

cqaiþkþqf ðqÞ
 !

¼ f ðkÞ ðk ¼ 0;1;2; . . . ;nÞ

ð3Þ

Combining Eqs. (1)–(3), the following equations can be derived:

hbibii ¼ c20f ð0Þ2 þ 2ðc21f ð1Þ2 þ c22f ð2Þ2 þ . . .þ c2nf ðnÞ2Þ ¼ f ð0Þ
hbibiþ1i ¼ cncn�1f ðnÞf ðn� 1Þ þ cn�1cn�2f ðn� 1Þf ðn� 2Þ

þ . . .þ c1c0f ð1Þf ð0Þ þ c0c1f ð0Þf ð1Þ þ . . .

þcn�1cn�2f ðn� 1Þf ðn� 2Þ þ cncn�1f ðnÞf ðn� 1Þ

¼
Xn�1

i¼�n

cjijcjiþ1jf ðjijÞf ðjiþ 1jÞ ¼ f ð1Þ

< bibiþ2 >¼
Xn�2

i¼�n

cjijcjiþ2jf ðjijÞf ðjiþ 2jÞ ¼ f ð2Þ

< bibiþ3 >¼
Xn�3

i¼�n

cjijcjiþ3jf ðjijÞf ðjiþ 3jÞ ¼ f ð3Þ
:

:

:

< bibiþn >¼
X0
i¼�n

cjijcjiþnjf ðjijÞf ðjiþ njÞ ¼ f ðnÞ

ð4Þ

It can be seen that the above Eq. (4) are nonlinear containing n
+ 1 undetermined coefficients ck (k = 0,1, ...,n). As n + 1 equations
are available in total, generally the solutions are available. The
above equations have been implemented into the Matlab software
and the solutions can be directly obtained.

Finally, with the solutions of undetermined coefficients, i.e., C
array members, the targeted array B can be obtained according
to Eq. (2). The value of B array member would appear as a series
of real numbers. Through additional mapping manipulation back
to ±1 according to given corresponding ratios of constituent

Solving C based on 
correlation function 

Targeted array B as 
determined from A & C 

Coefficient array 
C introduced 

Generation of
 random number series A

Generation of array B 
with spatial correlation 

Fig. 1. The flowchart of the numerical algorithm.
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