Accepted Manuscript

Automatic characterisation of chars from the combustion of pulverised coals using machine vision

Deisy Chaves, Laura Fernández-Robles, Jose Bernal, Enrique Alegre, Maria Trujillo

PII: S0032-5910(18)30475-3

DOI: doi:10.1016/j.powtec.2018.06.035

Reference: PTEC 13468

To appear in: Powder Technology

Received date: 15 March 2018 Revised date: 12 June 2018 Accepted date: 22 June 2018

Please cite this article as: Deisy Chaves, Laura Fernández-Robles, Jose Bernal, Enrique Alegre, Maria Trujillo, Automatic characterisation of chars from the combustion of pulverised coals using machine vision. Ptec (2018), doi:10.1016/j.powtec.2018.06.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Automatic characterisation of chars from the combustion of pulverised coals using machine vision

Deisy Chaves1, *

Laura Fernández-Robles2

Jose Bernal3

Enrique Alegre2

Maria Trujillo1

1Multimedia and Computer Vision group, School of Computer and Systems Engineering, University of Valle, Ciudad Universitaria Meléndez, Cali, Colombia

2School of Industrial and Informatics Engineering, Universidad de León, Campus de Vegazana, Leon 24071, Spain

3Computer Vision and Robotics Institute, Department of Computer Architecture and Technology, Universitat de Girona, Girona 17003, Spain

*Corresponding author. Address: Multimedia and Computer Vision group, School of Computer and Systems Engineering, University of Valle, Ciudad Universitaria Meléndez, Calle 13 No. 100-00, Cali, Colombia. Tel:+57 2 321 21 00, deisy.chaves@correounivalle.edu.co

Abstract The study of char morphology, produced during combustion of pulverised coal, may be used to evaluate the effect of coal on the performance of the burner. Particle reactivity is the response to temperature and oxygen concentration and depends on particle size and other variations during the combustion. In this paper, we automatically characterised chars from the combustion of pulverised coal using machine vision. We have followed two different approaches to describe the chars: (i) its morphology and (ii) its intensity distribution provided by texture features. We realised that each of the binary layers obtained after bitplane slicing a char image returned different representations that highlighted either rough or fine details. Hence we combined this finding with the two previous characterisation approaches. Thus, in this paper, we described char images using both morphology and texture computed on some specific bit-plane slices, and later on, we automatically classify each particle based on its description as having high, medium or low reactivity. To validate experimentally the proposed method we used char images from coals of three Colombian regions: Valle, Antioquia and Cundinamarca. We determined the reactivity of a coal sample by calculating the percentage of particles assigned to each of the three previous reactivity groups. The method that we are proposing obtains similar precision to the obtained by the manual analysis of char morphology following the International Committee for Coal and Organic Petrology criteria, but with the advantages of analysing the particles reactivity automatically.

Keyword Char morphology, coal combustion, coal reactivity, image processing, machine vision

Download English Version:

https://daneshyari.com/en/article/6673952

Download Persian Version:

https://daneshyari.com/article/6673952

<u>Daneshyari.com</u>