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Mixing of powders is of great importance in food, chemical and pharmaceutical industries. However, direct online
measurement of mixing is impractical due to difficulties in real-time particle sampling. In such systems,
soft-sensors placed external to the equipment may be used to indirectly determine the behaviour of the system
using relationships between internal and external phenomena. In this paper, a soft-sensor approach is studied for
a ribbon powdermixerwith 0, 2, 4 and 6 impeller spokes, and 20, 30, 40 and 50% volumetric particle filling, using
two types of particles of different densities and a fixed impeller speed of 100 RPM. The particle data are based on
DEMsimulation results in a previous study. Force sensors along the underside of themixer identify the number of
particle-wall contacts and the force experienced by the sensors during the DEM simulations. This information is
used alongwithmixing data to determine a relationship between external force data and internal mixing behav-
iour. The dividing rectangles global optimisation technique is used to approximate the mixing rate coefficient
from particle data, and principal component analysis is used to develop a fast and practical means to estimate
the mixing rate coefficient using only readings from external force sensors. This approach is then extended to
allow for real time estimation of the required mixing time.
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1. Introduction

Particle mixing is an important process in many food, chemical and
pharmaceutical production lines. Well mixed ingredients are key to
product reliability and reproducibility in these applications. In pharma-
ceutical applications, for example, mixing is commonly used to ensure
that active ingredients are evenly distributed for controlled release
and correct dosage, and to give tablets an even appearance [1]. Since
an excessive or insufficient dose of a pharmaceutical could have severe
health consequences, thorough particle mixing is crucial [1]. This
mixing may by conducted as a continuous process, such as in many
food production applications, or as a batch process [2, 3, 4]. Batchmixers
are commonly found in particle mixing for pharmaceutical goods,
where they are more suited to the regulations placed upon the manu-
facture of such goods [5]. One of themost commonly used batchmixers
is the ribbonmixer,which is able to exert strong shear stresses upon the
particles and effectively generate mixing by axial and rotational move-
ment of particles [2].

Experimental and numerical methods are used to study ribbon
mixers. An experimental study of mixing behaviour in a ribbon mixer
has shown that the nature of the supporting spokes on the impeller
affects the mixing rate, and the effect of the spokes varies with fill
level [6]. Muzzio et al. [6] used a core sampler to collect samples of the
mixture at several locations in the mixer, and studied the composition

using near-infrared spectrometry (NIR) using relative standard devia-
tion (RSD) as a measure of mixing. They showed that, for a 3-spoke
blade, mixing was faster at low fill levels. However, for a 5-spoke
blade, the high fill level achieved better mixing in the long run. Addi-
tionally, mixing performance can be poorer as observed when the
blade rotation speed is fast enough for particles to be forced onto the
walls where little mixing occurs [6]. A much more effective regime is
avalanching, which can occur at lower blade rotation speeds and
improves mixing performance. Avalanching is a major phenomenon at
low fill levels, whereas it becomes very minor for large fill levels [6].
Low fill levels tend to experience more surface mixing compared to
high fill levels, especially if the avalanching particles interact with the
impeller shaft. Fill level is of great interest in particle mixing due to
the throughput maximisation problem that arises by balancing the
short mixing time and small volumes of low fill levels with the long
mixing time and large volume of high fill levels [6]. DEM Simulation
studies by Halidan et al. [3, 2] focus on the effect of cohesiveness in
particles when being mixed in ribbon mixers. Their work showed that
cohesiveness, characterised by the Bond number, decreased the rate of
mixing. At high bond numbers, the limit of the final mixing was drasti-
cally reduced and the particles could not be well mixed with the condi-
tions studied [2]. They showed that mixing was fastest for intermediate
impeller speeds (100 RPM),where avalanchingwas dominant. At lower
speeds the effect of avalanching was too small to achieve fast mixing,
and at higher speeds the particles were forced into the wall where
mixing is poor [3]. The particle scale mixing was compared to a macro-
scopic mixing index, and the disagreement in the data showed that the
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Nomenclature

Cγ, ϵ(t) Number of p-w contacts at time t for sensor γ in simula-
tion ϵ

D Dimension of the hyperrectangle for DIRECT method.
Equal to the number of parameters

E{·} Expectation function
E⁎ Young's Modulus (kg·m−1 ·s−2)
Fγ, ϵ(t) Sensor force data for sensor γ in simulation ϵ

(kg·m·s−2)
Fc,ij Elastic contact force between particles i and j

(kg·m·s−2)
Fd,ij Damped contact force between particles i and j

(kg·m·s−2)
Ii Inertia of particle i (kg·m2)
L Lipschitz constant: Upper bound of gradient of ~Q
M(t) Lacey mixing index
Mij Torque applied to particle i due to rolling friction with

particle j (kg·m2 ·s−2)

M̂ Fitted mixing index
N Total number of sample volumes
Pl Matrix containing the first l columns of V
Q Objective function for DIRECT method
~Q Dimensionless objective function for DIRECT method
~Q Lower bound of ~Q
Ri Radius of particle i (m)
Rj Radius of particle j (m)
R⁎ Reciprocal of sum of reciprocals of radii Ri and Rj (m)
R2 Coefficient of determination for linear regression
Rij Vector from centre of particle i to contact point with

particle j (m)
S Singular value matrix
S0
2 Variance of fully segregated state
SR
2 Variance of fully mixed state
St
2(t) Variance of local particle fraction
U Unitary output matrix for singular value decomposition
V Unitary input matrix for singular value decomposition
W Matrix used for linear regression
X Matrix of input vectors from all simulations
XTesting Matrix containing input vectors from all testing simula-

tions
XTraining Matrix containing input vectors from all training simu-

lations
Xi(t) Coordination number in sample i
Xϵ Input vector for PCA from simulation ϵ
Z Standard normal distribution
ZTesting Standardised matrix containing input vectors from all

testing simulations
ZTraining Standardised matrix containing input vectors from all

training simulations
Zϵ Standardised input vector for PCA from simulation ϵ
b Regression coefficients
cn Normal damping coefficient
ct Tangential damping coefficient
dξ Distance from centre to vertex of rectangle ξ
e Euler's number
e Error vector from least squares regression
fn Magnitude of the normal contact force (kg·m·s−2)
g Gravitational acceleration (m·s−2)
i Counter variable
j Counter variable
k Mixing rate constant as determined by DIRECT ap-

proach (s−1)

~k Dimensionless mixing rate constant as determined by
DIRECT approach

~kmin Value of ~k that minimises ~Q

k̂ϵ Mixing rate coefficient for simulation ϵ determined by
PCA method (s−1)

kTraining Vector of mixing rate coefficients for training
simulations determined by DIRECT method

k̂Training Vector of mixing rate coefficients for training simula-
tions determined by PCA method

l Number of principle components being used in reduced
order PCA model

li Number of particles that make contact with particle i
m Number of input values for each simulation in PCA
mi Mass of particle i (kg)
mj Mass of particle j (kg)
m⁎ Reciprocal of sum of reciprocals of masses mi and mj

(kg)
n̂ Unit vector in normal direction
p True particle fraction throughout the mixture
pi Proportion of particle A in sample i
syϵ

2 Sample variance of yϵ
t Time (s)
t0 Initial time (s)
tf Time atwhich particles are considered to bewell mixed

(s)
t̂ f Time atwhich particles are considered to bewell mixed

(s)
vi Velocity vector of particle i (m·s−1)
vij Relative velocity vector of particle jwith respect to par-

ticle i (m·s−1)
wT Sum of all wi

wi(t) Weighting factor
x Example original variable for PCA
xb, β, γ, ϵ Number of forces in bin β for sensor γ in simulation ϵ
xc, γ, ϵ Number of p-w contacts per unit time for sensor γ in

simulation ϵ
x Mean of each feature in the training data set
xγ;ϵ Arithmeticmean of sensor force data for sensor γ in sim-

ulation ϵ (kg·m·s−2)
yϵ Orthogonal variables based on original variables x
Σx Covariance matrix
αi Coefficient vector for linear transformation
αj Coefficient vector for linear transformation
αϵ Coefficient vector for linear transformation
β Bin number that force data is grouped into
γ Sensor number
δn Normal displacement (m)
δt Tangential displacement during contact (m)
δt,max Maximum tangential displacement during contact (m)
ϵ Counter variable for simulation number
ε Mean-square error
ζ Counter variable for all potentially optimal rectangles
η Rotation speed (RPM)
λϵ The ϵth eigenvalue of Σx

μr Rolling friction coefficient
μs Sliding friction coefficient
ξ Counter variable
ρA Density of particle A (kg·m−3)
ρB Density of particle B (kg·m−3)
σ Standard deviation of XTraining
σ̂ Poisson's Ratio
τ Time delay (s)
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