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The ability tomodel granular systems at the level of individual particles has largely conduced to the success of the
discrete element method (DEM). At the same time, this fundamental concept hinders the use of the DEM for
industrial-scale simulations as the computational cost of the method increases with the size of the system. The
DEM coarse-grain (CG) model provides one means of counteracting this effect by replacing a group of original
particles by a larger (pseudo) particle. The major shortcoming of this approach is that it fails to capture effects
that intrinsically depend on particle size. To overcome this deficiency we have devised a novel model to effi-
ciently combine multiple levels of coarse-graining in a single DEM simulation. While a coarse realization is
used where it sufficiently represents the granular flow, the level of resolution may be increased recursively in
spatially confined regions of interest. Thus, the method is able to benefit from the speedup of the coarse-grain
approach and retain the details of the granular system in crucial regions. Two-way coupling between different
levels of resolution is established by passing volume-averaged flow properties. We present validation data
based on the comparison between the computed statistical properties of our multi-level coarse-grain (MLCG)
model and the corresponding properties of the fully resolved reference system.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Since its introduction by Cundall and Strack in 1979 [1], the DEM has
proven to be a valuable tool for the analysis of granular flows. Fostered by
the steadily growing computational power, theDEMwasable to leave the
field of pure academic research and find its way into numerous branches
of industry, where it is used to optimize processes and equipment in
terms of efficiency, throughput and quality. This applies to such diverse
areas as the food [2, 3], pharmaceutical [4, 5] and mining [6] industries,
as well as the iron and steel making industry [7]. Major reviews of sub-
stantive applications of the DEM are published periodically [8, 9, 10, 11].

Despite the advances in computer hardware and software
parallelization techniques such asMPI and OpenMP [12, 13, 14], simula-
tions of industrial-scale problems involving billions of particles easily
exceed the limits of feasibility. The demand for evermore detailed phys-
ical models in combination with complex industrial geometries aggra-
vates the problem even further, limiting the accessible simulation
times and length scales. Still, simulations are an indispensable tool in

process analysis, especially in cases,where experimental data is also dif-
ficult to obtain. However, to be able to handle the immense amount of
particles in engineering-scale problems, it is necessary to cut back on
the level of detail and accuracy. A conventional approach is the usage
of continuum mechanics in the form of the finite element method
(FEM) [15, 16] or the finite volume method (FVM) [17, 18, 19]. A
major downside of these methods, though, is their inapplicability to
processes that are dominated by the discontinuous behavior exhibited
by granular material.

Another approach to address large-scale granular systems and con-
nect the granular dynamics with macroscopic continuum dynamics is
the derivation of Eulerian fields from the discrete system [20, 21, 22].
This coarse-graining formulation is designed to yield fields that satisfy
the equations of continuum mechanics and can be used to calibrate
and validate Eulerian models.

As a different strategy to recover the granular characteristics and
increase the depth of physics, spatial multi-scaling techniques have
become a practicable approach. The combination of coarse- and fine-
scale representations - in confined regions of interest - tries to balance
the accuracy of the simulation with the affordable computational
expense. For instance, this strategy has been successfully applied in
the form of FEM-DEM coupling [23, 24] and CFD-DEM simulations [25,
26, 27, 28, 29]. The underlying idea of combining multiple scales is
indeed a more fundamental concept and probably best known from
the field of chemistry and molecular dynamics [30, 31, 32].
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In this spirit, we strive for a spatialmulti-scalemodel that retains the
Lagrangian character of the granular flow on all scales. To this end, we
draw on the coarse-grain model of the DEM as described in [26, 33,
34, 35, 36, 37] (not to be confused with the aforementioned coarse-
graining formulation). This technique can ease the severe computa-
tional demands of DEM simulations by grouping a number of equal par-
ticles together into a representative CG particle, thus effectively
reducing the system size. A dimensional analysis of the governing equa-
tions yields a set of scaling rules for this approach. However, for effects
that inherently depend on particle size, these scaling rules become inva-
lid and the CG model fails to correctly predict the system behavior. In
this situation, our model combines the conventional coarse-scale repre-
sentation with a more detailed realization that is able to capture the
decisive effect properly. The embedded fine-scale simulation is spatially
restricted to the critical region, while in the remainder of the system a
CG representation is maintained. The different levels of resolution are
coupled through the exchange of characteristic, volume-averaged flow
properties. The concurrent use of coarse- and fine-scale representations
allows to speed up the simulationwhile resolving essential details of the
granular system.

2. Method

2.1. Discrete element method

2.1.1. Contact model
In the Lagrangian approach of the DEM, the trajectory of each parti-

cle i=1,…, N in the system is obtained by solving Newton's equations
of motion

mi€xi ¼ fi ð1Þ

I i _ωi ¼ ti ð2Þ

where each element is characterized by its mass mi, position xi, inertia
tensor I i, angular velocity ωi, force fi, and torque ti. The forces fi include
external forces such as the gravitational forcemig, as well as the normal
and tangential forces during a binary collision

fn;ij ¼ knδn;ij−γn
_δn;ij ð3Þ

ft;ij ¼ ktδt;ij−γt
_δt;ij ð4Þ

with normal and tangential stiffness coefficients kn, t in the elastic terms,
damping coefficients γn,t in the dissipative terms, and overlaps δn,t. Over
the course of a collision event, the tangential spring-length δt is updated
using the relative tangential velocity to be then projected onto the tan-
gential plane. In each time step δt is truncated such that

f t;ij≤μ f n;ij ð5Þ

where μ is a Coulomb-like friction coefficient. Applying the Hertzian
theory and non-linear damping [38, 39], the stiffness and damping coef-
ficients read
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where e is the coefficient of restitution and E⁎, G⁎, R⁎, andm⁎ are the ef-
fective Young's modulus, shear modulus, particle radius, and mass,

respectively. The coefficient of restitution is defined as the ratio of the
relative particle velocity before and after the collision e=−v(τc)/v(0)
with collision time τc and is a constant input parameter in this model.
The definition of the effective parameters can be found, for instance,
in [40]. Furthermore, a rolling friction model based on an elastic-plastic
spring-dashpot approach is added in the equations of motion [41, 42].
Contacts between particles and walls - represented via triangle meshes
- are handled analogously with the mass and the radius of a wall ele-
ment set to infinity.

2.1.2. Neighbor lists
As a general optimization technique our implementation of the DEM

uses a Verlet-list in combination with a linked-cell-list to speed up the
search of potential contact partners [43]. The cell-size and cut-off dis-
tance used for generating these lists are determined by the largest par-
ticle in the simulation. The neighbor-list is rebuilt if a particle hasmoved
more than half the cut-off distance since the last build. Also the insertion
of additional particles requires an update of the neighbor lists, thus it is
desirable to add particles in batches to keep insertion events to a
minimum.

2.2. Coarse-grain model

In this study,we follow the coarse-graining approach outlined in [34,
35, 44] whereby a number of equal particles is represented by an
upscaled (pseudo) particle. To retain the physical behavior of the origi-
nal system, the interaction forces have to be adjusted accordingly. This
scaling is based on consistent energy density and energy density evolu-
tion in the original and coarse-scale system. Clearly, for a uniform effect
of gravity, particle density ρ must not change and to conserve kinetic
energy, particle velocities must be preserved.

Under these assumptions, a dimensional analysis of Eqs. (3, 4) yields
the following invariant parameters:

Π1 ¼ Rj

Ri
;Π2 ¼ kn;t

RiE
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Ri
2 ffiffiffiffiffiffiffiffi

ρE�
p ð7Þ

Π1 is related to geometric similarity and means that all particles
need to be scaled with the same constant coarse-grain ratio α= Ri,CG/
Ri. A straightforward way to derive at this conclusion is by inspecting
the effective particle radius

R� ¼ RiRj
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which needs to scale with α just as Ri. Similarly, when looking at the
effective mass
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we can note down thatm⁎∝α3 since ρ is assumed to remain constant. To
obtainΠ2 andΠ3, we substitute the dimensionless massm∗′=m∗/ρRi3,
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into Eq. (3) and arrive at
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