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Particle shape is one of the most important parameters that can cause significant changes of flow characteristics
in liquid fluidized beds, which however has not beenwell studied in the past. In this work, CFD-DEM approach is
used to investigate the hydrodynamics of ellipsoidal particles in liquidfluidizations. The non-uniformity distribu-
tions of pressure gradient and porosity with bed height are successfully captured for ellipsoids at high liquid
superficial velocities, consistent with those reported in literature. The results also show that ellipsoids intend
to enter the freeboard region and entrainment may occur. Disc-shape particles expand more significantly than
spherical and elongated particles. The force analysis indicates that with particle aspect ratio deviating from 1.0,
the drag force acting on ellipsoids increases while pressure gradient force reduces. Particle shape effects
shown above are closely related to particle orientations which can significantly affect particle-fluid interaction
force and particle terminal velocities.
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1. Introduction

The applications of liquid fluidization can be observed inmany parts
of industries such as particle classification, backwashing of granular
filters, leaching and washing, and bioreactors due to the substantial
liquid–solid surface contact, high heat andmass transfer rate, high oper-
ation flexibilities, and reduced backmixing of fluid and solid phases [1,
2]. In most of these multiphase operations, particle properties such as
size, density and shape may experience significant changes because of
attrition, coalescence, comminution or chemical reactions, which may
affect flow behaviour of particles and hence process performance.

In the past, many studies, either experimentally or numerically, have
been conducted on the flow behaviour in liquid fluidizations with
mono-sized particles or mixtures. Mono-sized spherical particles often
make homogenous fluidized beds [3, 4], and the bed expansion can be
described by Richardson and Zaki correlation [5]. Apart from homoge-
nous/particulate flow regimes, other flow regimes such as wavy [6],
aggregative/turbulent [3, 6], slugging [7], and bubbly [6] regimes can
also be observed in liquid fluidized beds. Moreover, introducing a
second or third components with different sizes or densities causes
more complicated flow structures. Extensive efforts have been made
in this direction to understand the principles of liquid fluidized beds
of multicomponent mixtures of spherical particles [1, 6, 8–11]. As a re-
sult, variousmodels have been proposed to quantify the solid-liquid flu-
idized bed characteristics [8, 9, 12].

In spite of substantial studies asmentioned above, the effects of par-
ticle shape on the solid-liquid flow behaviour have still less been
reported. Except for two physical experimental studies [13, 14], the pre-
vious work mainly considered particles as spheres. In practice, particles
are generally non-spherical in most of processes [13] such as ore bene-
ficiations using liquid-solid fluidized beds separator [15]. Barghi et al.
[14] observed that cylindrical particles with the length/diameter ratio
L/D =1 were mixed well with spherical particles, but elongated cylin-
drical particles with L/D = 2 segregated from spherical particles.
Escudie et al. [13] reported that differences in particle shape can result
in segregation for binary mixtures of particles with the same volume
and density. Epstein et al. [16] demonstrated that the serial model
[16] was able to predict bed expansions for binary and ternarymixtures
of different particle shapes. These observations show that particle shape
can cause different flow behaviour in liquid fluidizations rather than
that observed for ideal spherical particles. However, the answers to
some fundamental questions such as how and why particle shape
affects flowphenomena are not clear, and hence still poorly understood.

In recent years, computational modelling, typically based on the
CFD-DEM approach, has increasingly become an efficient tool to study
fluidisations. CFD-DEM has been verified as one of the most effective
approaches to study granular materials [17–19], and it provides micro-
scopic information of flow dynamics in fluidized beds. Therefore, in this
work, CFD-DEM is used to examine the effects of particle shape on the
flow characteristics in liquid fluidizations. In the simulations, ellipsoids
are used as they can represent a wide range of particle shapes from
oblate to prolate particles. Different aspect ratios varying from 0.28 to
5.33 are employed, and results are analysed mainly in terms of particle
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flow patterns, pressure drop, and bed expansion. In addition, force and
particle orientation analysis is also conducted to explain the occurrence
of entrainment phenomenon for different shaped particles.

2. Model description

In the CFD-DEM approach, particle motions are determined by
Newton's second law of motion at a particle scale, and the continuum
fluid flow is described on the basis of local-averaged Navier-Stokes
equations at a computational cell level. The CFD-DEM approach has
been well developed and documented in the literature [20–22], and
its extension to coarse [23, 24] and fine [25, 26] ellipsoidal particles
has been presented for gas fluidizations. In this work, it is further
extended to liquid fluidizations. For convenience, the model is briefly
given below.

2.1. CFD-DEM governing equations

The particle phase in the particle-fluid flow is considered as a
discrete phase. The motion of particles is determined by Newton's sec-
ond law of motion [27],. The governing equations for the translational
and rotational motion of particle iwith radius Ri, massmi, and moment
of inertia Ii can be written as:

midvi
dt

¼
Xki
j¼1

fc;ij þ fd;ij
� �þ fpf ;i þmig ð1Þ

and

Ii
dωi

dt
¼

Xki
j¼1

Mt;ij þMr;ij þMn;ij
� � ð2Þ

where vi andwi are translational and angular velocities of the particle i,
ki is the number of particles interactingwith the particle i, fc,ij and fd,ij are
elastic contact force and damping force, respectively. fpf,i is the interac-
tion force between particle and fluid, andmig is the gravitational force.
Ii is the moment of inertia of particle i, and the torque acting on particle
i by particle j includes three components: Mt,ij which is generated by
tangential force and causes particle i to rotate, Mr,ij commonly known
as the rolling friction torque, andMn,ij is the torque generated by normal
force when the normal force does not pass through the particle centre.

The liquid flow field is described on the basis of locally-averaged
Navier-Stokes equations [28, 29]. Therefore, the mass and momentum
conservation equations governing the liquid phase are respectively de-
scribed as:

∂ ε f
� �

∂t
þ ∇ � ε fu

� � ¼ 0 ð3Þ

∂ ρ f ε fu
� �

∂t
þ ∇ � ρ f ε fuu

� �
¼ −∇p−Fpf þ ∇ � ε f τ

� �þ ρ f ε f g ð4Þ

where u, ρf, p, and Fpf are the fluid velocity, fluid density, pressure, and
volumetric fluid-particle interaction force, respectively; τ and εf are the
fluid viscous stress tensor and porosity which are given as τ= μe[(∇u)
+ (∇u)−1] and εf =1−∑i=1

ki Vi/ΔV, where Vi is the volume of particle i
(or part of the volume if particle is not fully in the CFD cell), ki is the
number of particles in the CFD cell. μe is the fluid effective viscosity de-
termined by k − ε model [30] which has been used in our previous
work [23, 24, 26]. The volumetric fluid-particle interaction force in a
computational cell volume of ΔV is calculated by Fpf = (∑i=1

ki fpf,i)/ΔV,
where fpf,i is the particle-fluid interaction force on the particle i.

2.2. Particle-particle and particle-fluid interaction forces

The equations to calculate contact forces and torques between two
spheres have been well established [17], and also extended to ellipsoi-
dal particles [23, 25]. Zheng et al. [31] proved that the normal and
tangential contact force models used for spheres are valid for ellipsoids.
In addition, since ellipsoids provide smooth/continuous surfaces, the
same Coulomb condition or sliding/rolling friction models as used for
spheres can also be applied. The equations used in this work to calculate
the inter-particle forces and torques are listed in Table 1.

Various forces have been identified to determine interactions
between particles and liquid, including the drag force, the pressure gra-
dient force, the virtual mass force, the Basset force, the Saffman force,
and the Magnus force [17]. Comprehensive discussions have been
made by Di Renzo et al. [32] that except for the drag force and the pres-
sure gradient force, other types of particle-fluid interaction forces can be
ignored in the simulations of liquid fluidizations. This is due to the fact
that the equations of these forces were developed mainly based on
single-particle/dilute systems or under simplified fluid flow conditions,
hence their applicability is questionable [33]. Moreover, such forces
have been ignored in many studies in the literature, demonstrating
that the reliable and consistent results with experiments can be gener-
ated [7, 32, 34–40]. Hence, in this work, only the drag force fd,i and the
pressure gradient force (fpg, i = − Vi∇p) are considered in the present
CFD-DEM model.

Different models have been proposed to calculate the drag force on
spheres [17]. In particular, the approach proposed by Di Felice [41] is
one of the most popular ones [21–23], and also suitable for ellipsoids
as demonstrated in our previous work [23]. Therefore, this method is
still used, and the equation is written as [41]:

fd;i ¼ 0:5� CDρ f A⊥ε f
2 ui−vij j ui−við Þε−γ

f ð5Þ

where γ=3.7− 0.65 exp [−(1.5− log10Rei)2/2], A⊥ is the cross-sec-
tional area perpendicular to the fluid flow, Rei is the relative Reynolds
number, which is defined as Rei = ρfdvεf ∣ ui − vi ∣ /μf, where dv is the
equivalent diameter defined as the diameter of a sphere with the
same volume as the ellipsoid particle. CD is the drag coefficient, which
can be calculated by different models as briefly discussed below.

Considerable investigations have been made to determine the drag
coefficient CD for non-spherical particles, with shapes varying from
cubes and cylinders to ellipsoids and more generally irregular shapes
[42–48]. Based on the work by Sommerfeld and Lain [49] that Ganser's
[44] correlation over-predicts the particle average velocity, Hölzer and
Sommerfeld [46] used a large amount of literature experimental data
and propose a correlation for CD which is applicable over a wide range
of Re numbers, and also considers the effects of both particle shape
and orientation. Its validity were further verified by Hilton et al. [50],

Table 1
Equations to calculate inter-particle forces and torques acting on particle i.

Forces or torques Equations

Normal elastic force, fcn,ij −4=3E�
ffiffiffiffiffi
R�p

δ3=2n n
Normal damping force, fdn,ij −cnð8mijE

� ffiffiffiffiffiffiffiffiffiffi
R�δn

p
Þ1=2vn;ij

Tangential elastic force, fct,ij −μs j fcn;ij j ð1−ðδt=δt; maxÞ3=2Þδ̂t
Tangential damping force, fdt,ij −ctð6μsmijjfcn;ijj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−δt=δt; max

p
=δt; maxÞ1=2vt;ij

Coulomb friction force, ft,ij −μsjfcn;ijjδ̂t
Torque by tangential forces, Mt,ij Rc,ij × (fct,ij + fdt,ij)
Torque by normal forces, Mn,ij Rc,ij × (fcn,ij + fdn,ij)
Rolling friction torque, Mr,ij μr;ijjfn;ijjω̂n

ij

where 1/mij=1/mi+1/mj, R
� ¼ 1=ð2

ffiffiffiffiffiffiffiffiffi
A0B0p

Þ, E∗= E/(2(1− v2), ω̂n
ij ¼ ωn

ij= j ωn
ij j, δ̂t ¼ δt=

jδt j,δt, max = μs(2− ν)/2(1− ν)δn, vij=vj− vi+ωjRc,ji−ωiRc,ij, vn,ij= (vij ⋅ n) ⋅ n, vt,ij=
(vij× n) × n. Note that tangential force (fct,ij+ fdt,ij) should be replaced by ft,ijwhen δt ≥ δt,
max.
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