Accepted Manuscript

Particle resolved direct numerical simulation of free settling particles for the study of effects of momentum response time on drag force

Ali Abbas Zaidi

PII: S0032-5910(18)30339-5

DOI: doi:10.1016/j.powtec.2018.04.058

Reference: PTEC 13359

To appear in: Powder Technology

Received date: 18 August 2017 Revised date: 25 December 2017 Accepted date: 23 April 2018

Please cite this article as: Ali Abbas Zaidi, Particle resolved direct numerical simulation of free settling particles for the study of effects of momentum response time on drag force. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Ptec(2017), doi:10.1016/j.powtec.2018.04.058

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Particle resolved direct numerical simulation of free settling particles for the study of

effects of momentum response time on drag force

Ali Abbas Zaidi1*

¹Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland

Abstract

Dynamics of settling particles is studied by particle resolved direct numerical simulation in

periodic domain. The main aim of this study is to explain the effects of momentum response

time on the average drag force of settling process for different solid volume fractions. The

response time is varied by changing the settling fluid, solid volume fraction and Reynolds

number. Simulations showed that the particles with larger response times are negligibly

affected by fluid. Thus, the average drag force acting on larger response times particles is

nearly same as the average drag force on fixed particles. However, for particles with smaller

response times, particles develop microstructures and velocity fluctuations during settling

process. This behavior of low response time settling particles results in significant deviation

of average drag force from the average drag force on fixed particles. At the end of paper, an

improved and better drag correlation is proposed for performing mesoscopic simulations.

Keywords: Momentum response time, Drag force, Settling of particles, Particles structures in

settling, Particle resolved direct numerical simulations

* Tel. & Fax +41-78-955-8602

Email Address. zaidi@ethz-u.ch (A. A. Zaidi).

Preprint submitted to Elsevier

25 December, 2017

1

Download English Version:

https://daneshyari.com/en/article/6674423

Download Persian Version:

https://daneshyari.com/article/6674423

<u>Daneshyari.com</u>