Accepted Manuscript

The effect of particle morphologies on the percolation of particulate porous media: A study of superballs

POWDER TECHNOLOGY

ANTERIOR OF ANTERIOR PROPERTY OF A PROP

Jianjun Lin, Huisu Chen

PII: S0032-5910(18)30377-2

DOI: doi:10.1016/j.powtec.2018.05.015

Reference: PTEC 13388

To appear in: Powder Technology

Received date: 8 December 2017 Revised date: 14 April 2018 Accepted date: 10 May 2018

Please cite this article as: Jianjun Lin, Huisu Chen, The effect of particle morphologies on the percolation of particulate porous media: A study of superballs. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Ptec(2017), doi:10.1016/j.powtec.2018.05.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

The effect of particle morphologies on the percolation of particulate

porous media: a study of superballs

Jianjun Lin^a, Huisu Chen^a,*

^aJiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast

University, Nanjing 211189, P.R. China

*E-mail: chenhs@seu.edu.cn; Tel.: +86-13270890362; Fax. : +86-25-52090667.

Abstract

Particle morphology is a crucial factor of influencing the prediction of percolation threshold

in the study of continuum percolation of particle systems. Previous works on the percolation of

particle synthesis mainly focused on spheres, ellipsoids and spherocylinders. In this paper, the

newly synthesized superballs which smoothly interpolate between octahedrons, spheres and

cubes are introduced, and a simple contact detection algorithm for superballs is proposed. By

combing Monte Carlo method and percolation theory, the continuum percolation of randomly

orientated congruent overlapping superballs is investigated in detail. The global percolation

threshold ψ_c for superballs with shape parameter m in [0.5, $+\infty$) are obtained in terms of a

finite-size scaling technique. Finally, an analytical approximation for percolation threshold ψ_c of

superballs is derived and verified by existing data from literature. It is found from the study that

when the parameter m varies between 0.5 and 1.0, the percolation threshold ψ_c significantly

increases with the increasing m, whereas the value of m continues to increase from 1.0 to $+\infty$, the

percolation threshold ψ_c will gradually decrease. We hope this study can provide good guidance

for the development of percolation theory about non-spherical particle packing systems.

Keywords: Porous media, Overlapping superballs, Contact detection, Particle morphologies,

1

Download English Version:

https://daneshyari.com/en/article/6674542

Download Persian Version:

https://daneshyari.com/article/6674542

<u>Daneshyari.com</u>