Accepted Manuscript

Effect of silver-water nanofluid on heat transfer performance of a plate heat exchanger: An experimental and theoretical study

S.H. Pourhoseini, N. Naghizadeh, H. Hoseinzadeh

PII: S0032-5910(18)30251-1

DOI: doi:10.1016/j.powtec.2018.03.058

Reference: PTEC 13289

To appear in: Powder Technology

Received date: 15 November 2017
Revised date: 2 March 2018
Accepted date: 21 March 2018

Please cite this article as: S.H. Pourhoseini, N. Naghizadeh, H. Hoseinzadeh, Effect of silver-water nanofluid on heat transfer performance of a plate heat exchanger: An experimental and theoretical study. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Ptec(2017), doi:10.1016/j.powtec.2018.03.058

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of silver-water nanofluid on heat transfer performance of a plate heat exchanger: An experimental and theoretical study

S.H. Pourhoseini¹, N. Naghizadeh², H. Hoseinzadeh³

Abstract

A simple and economical process for synthesis of silver-water nanofluid is proposed and the nanofluid is examined to determine how variations in its volume flow rate and concentration, in the range of 0-10 mg/L, affect the overall heat transfer coefficient of a CR14-45 COMER plate heat exchanger (PHE) and thermal characteristics of the nanofluid. The results indicate that both nanofluid concentration and volume flow rate enhance the overall heat transfer coefficient of PHE. However, volume flow rate has a greater effect on enhancing the overall heat transfer coefficient than nanofluid concentration does. In addition, at some critical nanofluid concentration (2.5 mg/L), the rate of heat transfer reaches its maximum. As the concentration of silver nanoparticles in water increases, thermal conductivity initially rises to a maximum at a concentration of about 2.5 mg/L. The thermal conductivity of silver-water nanofluid in such a state is 36.6% greater than that of pure water. However, due to aggregation phenomenon and smaller area-to-volume fraction (A/V) at high concentrations, the effective thermal conductivity decreases. Also, the rate of temperature rise and Brownian motion intensify with concentration. Superposition of the results related to conductivity and temperature rise confirm the existence of a critical concentration for silver-water nanofluid.

Key Words: Silver-Water nanofluid, Plate heat exchanger, Overall heat transfer coefficient, Nanofluid concentration.

hadipoorhoseini@gmail.com

^{1,3} Department of Mechanical Engineering, Faculty of Engineering, University of Gonabad, Gonabad, Iran.

² Department of Analytical Chemistry, University of Gonabad, Gonabad, Iran.

¹ Corresponding author

Download English Version:

https://daneshyari.com/en/article/6674853

Download Persian Version:

https://daneshyari.com/article/6674853

Daneshyari.com