Accepted Manuscript

Effect of calcium ionic concentrations on the adsorption of carboxymethyl cellulose onto talc surface: Flotation, adsorption and AFM imaging study

POWDER TECHNOLOGY

AN INTERNATIONAL PRINTING AND THE SCHOOLOGY OF WE AND DAY PARTICULAR X YETTER

ADDRESS:

Saizhen Jin, Qing Shi, Qi Li, Leming Ou, Kai Ouyang

PII: S0032-5910(18)30205-5

DOI: doi:10.1016/j.powtec.2018.03.014

Reference: PTEC 13245

To appear in: Powder Technology

Received date: 9 June 2017

Revised date: 28 February 2018 Accepted date: 7 March 2018

Please cite this article as: Saizhen Jin, Qing Shi, Qi Li, Leming Ou, Kai Ouyang, Effect of calcium ionic concentrations on the adsorption of carboxymethyl cellulose onto talc surface: Flotation, adsorption and AFM imaging study. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Ptec(2017), doi:10.1016/j.powtec.2018.03.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Effect of calcium ionic concentrations on the adsorption of carboxymethyl cellulose

onto talc surface: flotation, adsorption and AFM imaging study

Saizhen Jin, Qing Shi*, Qi Li, Leming Ou, Kai Ouyang

School of Minerals processing and Bioengineering, Central South University, Changsha 410083, China

Abstract: The effect of various calcium ionic concentration on the adsorption of carboxymethyl

cellulose (CMC) onto talc surface has been investigated using flotation tests, adsorption measurements and

tapping mode atomic force microscopy (AFM) imaging. Microflotation tests indicated that the depression of

talc depressed by CMC was increasingly enhanced with the increase of Ca2+ at pH 8.5. And within the pH

range of 2-11.5, in the presence of Ca²⁺, the depression of talc by CMC could be facilitated by Ca²⁺ stably.

Adsorption experiments confirmed that with the increase of Ca²⁺, the adsorbed CMC on talc increased at pH

8.5. AFM imaging revealed the morphology of adsorbed CMC were different in the absence and presence of

various Ca²⁺ ions concentration. In the absence of Ca²⁺ ions, the morphology of adsorbed CMC consisted of

randomly distributed salient point domains with a lower area fraction of surface coverage; in the presence of

10⁻⁴mol/L Ca²⁺ ions the morphology mingled with salient point and reticulate adsorption; in the presence of

10⁻³ and 10⁻²mol/L Ca²⁺ ions the morphology is a reticulate multilayer adsorption with a higher area fraction

of surface coverage.

Keywords: Talc surfaces; CMC; Ca²⁺ ions; AFM; Adsorption

1 Introduction

Talc (Mg₃Si₄O₁₀(OH)₂) is a layered magnesium silicate mineral, which is commonly encountered with

nickel sulfide ore, complex sulfide ore and platinum group metals ore [1-6]. The crystal structure of talc

consists of layers of silica tetrahedral and magnesia octahedral (brucite, Mg(OH)2), and one magnesia

octahedral sheet is sandwiched between two silica tetrahedra sheets [7-9]. The surface of talc particle is

consisted of two different surfaces, namely the basal plane and the edge [9].

Generally, because the silica tetrahedral is nonpolar, the basal planes of talc surface is uncharged, thus

makes the basal planes hydrophobic. On the contrary, talc edges consist of charged Mg²⁺ and OH ions and,

therefore, the edges of talc are likely to be hydrophilic [7]. Talc surface is occupied by approximately 90% of

basal planes [9], therefore, talc is a naturally hydrophobic mineral. However, in some cases, a small amount of

Ti³⁺ or Al³⁺ can substitute for Si⁴⁺ in the tetrahedral layer [10], therefore basal plane of talc is with a trace of

* Correspondence.

E-mail address: shiqok@csu.edu.cn (Q. Shi)

Download English Version:

https://daneshyari.com/en/article/6674883

Download Persian Version:

https://daneshyari.com/article/6674883

Daneshyari.com