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Two discrete element models, super-ellipsoid model and multi-sphere model, are employed in this paper to
describe the ellipsoidal particles. And the packing and flow behavior of ellipsoidal particles are investigated by
the discrete element method (DEM) simulation and experiment. To compare the two models for ellipsoid,
three tests are conducted: (i) the packing of ellipsoidal particles in a rectangular container, (ii) the flow of
ellipsoidal particles in a horizontal rotating drum, and (iii) the discharge of ellipsoidal particles from a flat bottom
hopper. Simulation results show that the super-ellipsoid model can accurately reproduce the packing and flow
behavior of ellipsoidal particles. In the simulations using multi-spheres, when the spheres are more in a multi-
sphere particle, the accuracy of simulation is acceptable while the computational time is much longer than the
super-ellipsoid model. When fewer spheres are used to approximate the ellipsoidal particle, the computational
time can be saved while the accuracy of the simulation decreases.

© 2017 Elsevier B.V. All rights reserved.

Keywords:
Discrete element method (DEM)
Ellipsoidal particles
Super-ellipsoids
Multi-spheres
Granular flow

1. Introduction

Granular materials are commonly encountered in nature, industries
and our daily life [1,2]. The dynamic behaviors of granular materials are
complicated due to complex interactions between particles as well as
their interactionswith surroundings. Knowledge about the dynamic be-
haviors of granular systems is of major importance for related industrial
applications. In recent years, the discrete element method (DEM), as
pioneered by Cundall and Strack in 1979 [3], has been proven to be a ca-
pable tool for predicting the mechanical behaviors of granular systems
in various application areas such as agriculture [4,5], mining [6–8],
pharmaceutics [9–12], chemical engineering [13,14] and geological en-
gineering [15,16], and it can provide much information of particle be-
haviors at both particle scale and granular system scale.

Numerous studies have shown that the representation of particle
shape is one of the pivotal challenges for the development of DEM sim-
ulation [17–20] due to its significant effect on themechanical properties
of granular materials. However, most DEM studies published in litera-
tures have been conducted using spherical particles due to the simplic-
ity of contact detection between spheres [21–23]. Actually, most natural
and industrial granular materials involved particles exhibit significant
different shapes. The DEM based on spherical particle representation
may predict a deviating mechanical behavior on the single particle
level as well as in the larger particle assemblies, which leads to the sim-
ulation results may be questionable.

Tomore accurately simulate thegranular systemsof real particles, var-
ious shape representation approaches of non-spherical particles have
been proposed. The most commonly used approaches in literatures
include: multi-sphere approaches [24–27], ellipsoid [28–30], super-
ellipsoid approaches [31–35] and polyhedron [36–38]. These approaches
are used to explicitly describe various shapes of the non-spherical parti-
cles such as cylinders, cubes, tablets and ellipsoids. A comprehensive
overview of the possible particle shape representations in the DEM is
given by Lu et al. [39]. In this study, the super-ellipsoid approach as well
as the multi-sphere approach is adopted to model ellipsoidal particles.

Here we focus on the ellipsoidal particles because various types of
granular matters are of this shape, which are widely used in the phar-
maceutical, food, agricultural and other industries. In recent years, a
number of researchers have contributed a lot of efforts in modelling of
elliptical particles in DEM, including the development of two dimen-
sional elliptical particles [40–42] as well as the three dimensional ellip-
soids [43–47]. In particular, there have been several attempts to use
ellipsoids [29], super-ellipsoids [33,48] and multi-spheres [49] to
model ellipsoidal particles.

The super-ellipsoid method, which belongs to the larger class of
super-quadric method [50], is extensively used to model and simulate
symmetric particles with different aspect ratios, and the particle corners
and edges range from rounded to spiky in shape. Super-ellipsoids was
first introduced to DEM by Williams et al. [31] and used in two dimen-
sional systems,whichwas extend to three dimensional systems by Cleary
[51]. In the three dimensional systems, the super-ellipsoid method was
used to simulate over one hundred thousand non-spherical particles,
demonstrating the effectiveness of the approach [52,53]. The multi-

Powder Technology 331 (2018) 179–191

⁎ Corresponding author.
E-mail address: yzzhao@zju.edu.cn (Y. Zhao).

https://doi.org/10.1016/j.powtec.2018.03.017
0032-5910/© 2017 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r .com/ locate /powtec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2018.03.017&domain=pdf
https://doi.org/10.1016/j.powtec.2018.03.017
mailto:yzzhao@zju.edu.cn
Journal logo
https://doi.org/10.1016/j.powtec.2018.03.017
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/powtec


sphere method is developed by Favier et al. [24] and Jensen et al. [54], of
which the main advantages are the simplicity of implementation and the
contact detection efficiency because it uses a sphere-sphere contact de-
tection algorithm for irregular shape particles [25].

In this study, DEM simulation and experimental study on the pack-
ing and flow behavior of ellipsoidal particles with different aspect ratios
were carried out. In order to evaluate the adequacy of the super-
ellipsoid method and multi-sphere method for modelling ellipsoidal
particles, we conducted three tests: packing of ellipsoidal particles in a
rectangular container, flow of ellipsoidal particles in a rotating drum,
and discharge of ellipsoidal particles from a flat bottomhopper. Besides,
in order to compare the computational efficiency between the super-
ellipsoid method and multi-sphere method, the computational time of
these three tests was also recorded, respectively.

2. Mathematical model

2.1. Representation of ellipsoidal particles and contact detection

2.1.1. Super-ellipsoid model
According to Barr [50] the surface of a super-ellipsoid can be de-

scribed by the so-called inside-outside function:

f x; y; zð Þ ¼ x
a

��� ���s2 þ y
b

��� ���s2
� �s1

s2 þ z
c

��� ���s1−1 ¼ 0; ð1Þ

where a, b and c are referred to be the half-lengths of the particle along
the particle's principle axes, and s1 and s2 (written as 2/ε1 and 2/ε2 in
[50]) control the sharpness of the particle edges and are called the
shape indices in this paper. In this function, s1 determines the shape of
the cross section in the y-z and x-z planes, and s2 relates to the shape in
the x-y plane. Fig. 1 shows four different non-spherical particles with dif-
ferent shape indices or half-lengths.When a= b= c and s1= s2= 2, the
particle is spherical. When a= b= c and s1 = s2 N 2, the particle looks
more like a cube with the increase of s1 and s2. When s1 = s2 = 2, a
wide range of shapes of ellipsoid from platy to elongated can be repre-
sented by changing the value of a, b and c, respectively.

It should be clearly that only when the center and principle axes of
the particle coincides with that of the global coordinate system can
Eq. (1) be used to describe the particle. Thus, when a particle is at op-
tional position in the global coordinate system, the local coordinate sys-
tem should be introduced, in which the center and principle axes of the
particle must coincide with that of the local coordinate system. Then
using a matrix A to perform the coordinate transformation of Eq. (1),
and the function can be written as:

x ¼ A x0 þ P; ð2Þ

A ¼
cosψ cosφ− sinψ cosθ sinφ − cosψ sinφ− sinψ cosθ cosφ sinψ sinθ
sinψ cosφþ cosψ cosθ sinφ − sinψ sinφþ cosψ cosθ cosφ − cosψ sinθ

sinθ sinφ sinθ cosφ cosθ

2
4

3
5;

ð3Þ

where x= (x,y,z)T is the position vector in the global coordinate sys-
tem, P = (x0,y0,z0)T is the position vector of the particle centroid in
the global coordinate system, x′= (x′,y′,z′)T is the position vector in
the local coordinate system, and (ψ, θ, φ) are the Euler angles.

In the DEM simulation, a key step of the algorithm is the contact de-
tection. For non-spherical particles, the contacts between them are dif-
ficult to calculate. Various analytical approaches have been proposed to
detect the contacts between ellipsoidal particles including intersection
algorithm [40], geometric potential algorithm [41,43,44], and common
normal algorithm [43,55]. In the current work, the geometric potential
algorithm is used. To determine the overlap of two contacting non-
spherical particles, a “deepest point method” [33,34,39] is adopted. In
the global coordinate system, there are two ellipsoidal particles, Particle
1 and Particle 2, satisfying the F1(x,y,z) = 0 and F2(x,y,z) = 0, respec-
tively, which are shown in Fig. 2a. Suppose that P1(x1,y1,z1) is any
point on the surface of Particle 1, then F1(x1,y1,z1) = 0. If P1(x1,y1,z1) is
inside the Particle 2 and it satisfies the relation of F2(x1,y1,z1) b 0, then
we consider that Particle 1 is in contact with Particle 2. If two particles
are in contact, there must be a point P1(x1,y1,z1) meets the condition
that F2(x1,y1,z1) is the minimum of all F2(x,y,z). Therefore, the problem
of calculating the contact detection is transformed into calculating the
minimum value of the equations below:

Objective function:

minF2 x; y; zð Þ ð4Þ

Constraint equation:

F1 x; y; zð Þ ¼ 0 ð5Þ

In this study, an efficient Lagrange multiplier approach based on the
CFR method [56] is employed to solve the optimization numerically, of
which the tolerance of error is the minimumhalf length of the principle
axes of the particle multiplied by 10−6, i.e. min {a, b, c} × 10−6. The La-
grangian can be expressed as follows:

L x; y; z;λð Þ ¼ F2 x; y; zð Þ þ λ F1 x; y; zð Þ½ �; ð6Þ

where λ is the Lagrange multiplier, and L is minimized with respect to
the variables x, y, z, and λ. The Newton-Raphson approach is used to
solve the Eq. (6). Starting with an initial guess for x, y, z, and λ, the
first deepest point P1(x1, y1, z1) on the surface of Particle 1 is obtained.
Repeating the process can also obtain the deepest point P2(x2, y2, z2)
on the surface of Particle 2. The overlap between the two particles can
be represented by a line segment that joining the two deepest points,
and the midpoint of the line segment represents the contact point Pc.
For the contact detection between an ellipsoidal particle and the wall,
as shown in Fig. 2b, the overlap between the particle and thewall is rep-
resented by the line P1P3 rather than the line P1P2, aswell as the effective
contact point is the point P1 rather than the midpoint of the line seg-
ment P1P3, and the action direction is perpendicular to the wall. Except

Fig. 1. Spherical and non-spherical particles described by super-ellipsoids.
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