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a b s t r a c t

A numerical model for predicting the flow and orientation state of semi-dilute, rigid fiber suspensions in a
tapered channel is presented. The effect of the two-way flow/fiber coupling is investigated for low Rey-
nolds number flow using the constitutive model of Shaqfeh and Fredrickson. An orientation distribution
function is used to describe the local orientation state of the suspension and evolves according to a Fok-
ker–Plank type equation. The planar orientation distribution function is determined along streamlines of
the flow and is coupled with the fluid momentum equations through a fourth-order orientation tensor.
The coupling term accounts for the two-way interaction and momentum exchange between the fluid
and fiber phases. The fibers are free to interact through long range hydrodynamic fiber–fiber interactions
which are modeled using a rotary diffusion coefficient, an approach outlined by Folgar and Tucker.
Numerical predictions are made for two different orientation states at the inlet to the contraction, namely
a fully random and a partially aligned fiber orientation state. Results from these numerical predictions
show that the streamlines of the flow are altered and that velocity profiles change from Jeffery–Hamel,
to something resembling a plug flow when the fiber phase is considered in the fluid momentum equa-
tions. This phenomenon was found when the suspension enters the channel in either a pre-aligned, or
in a fully random orientation state. When the suspension enters the channel in an aligned orientation
state, fiber orientation is shown to be only marginally changed when the two-way coupling is included.
However, significant differences between coupled and uncoupled predictions of fiber orientation were
found when the suspension enters the channel in a random orientation state. In this case, the suspension
was shown to align much more quickly when the mutual coupling was accounted for and profiles of the
orientation anisotropy were considerably different both qualitatively and quantitatively.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we investigate the effect of the two-way coupling
between the flow field and the orientation state of rigid fiber sus-
pensions flowing through a tapered channel. Flow in the channel is
governed by Cauhy’s momentum equations for viscous, incom-
pressible, planar, isothermal flow, using the constitutive model of
Shaqfeh and Fredrickson (1990) to describe the local stress contri-
bution from the fiber phase. The fiber concentration considered
here is semi-dilute, which is be defined mathematically through
the following relationship (e.g. Doi and Edwards, 1984):
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where n is the number density of fibers in the suspension, that is,
the number of fibers per unit volume, L is the fiber length and d
is the fiber diameter. In this study, we consider suspensions with

identical properties to those used in the experiments performed
by Krochak et al. (2008). These suspensions contained fibers of
length L = 5 mm, diameter, d = 0.1 mm and of concentration
nL3 ¼ 8. The fiber aspect ratio, r, that is, the ratio of fiber length, L
to its diameter, d, is 50. The Reynolds number, based on the length
of the fiber is asymptotically small and based on the inlet channel
height is approximately 500.

Controlling the orientation state of fiber suspensions in tapered
channel flows is of major interest to papermaking. During paper-
making, a semi-dilute fiber suspension flows through a specially
shaped duct called a headbox. The first section of the headbox con-
sists of a manifold that sets up a uniform flow across the duct. The
flocculated fiber suspension is then fluidized by turbulence created
locally from a sudden change in geometry just after the manifold.
This is indicated in Fig. 1 as the turbulence generators. The fluid-
ized fiber suspension subsequently passes through a planar con-
traction called the nozzle, which accelerates the fluid to a high
speed and creates a thin planar jet. The jet is typically 10 m wide,
1 cm thick with a mean velocity in excess of 20 m/s. The jet then
impinges on a permeable mesh where the water is drained and
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the paper sheet formed. The orientation distribution of the pulp fi-
bers on the forming mesh plays a fundamental role in determining
the strength of the final product.

Fiber orientation in paper depends on a number of different fac-
tors, such as the fiber orientation state at the contraction inlet, the
concentration of fibers in the suspension, and perhaps most impor-
tantly, on the flow field generated after the turbulence generator.
Major theoretical developments in fiber suspension rheology have
been made over the last two decades. Perhaps most notably, it has
been established that the suspension rheology and flow field re-
spond to the orientation state of the suspension (e.g. Batchelor,
1970; Cox, 1970; VerWeyst and Tucker, 2002; Lipscomb and Denn,
1988). The result is a two-way coupling between the fiber orienta-
tion state and the underlying flow field. The first to address this is-
sue was Batchelor (1970) who developed a general constitutive
equation for the bulk stress in a suspension of rigid, inertialess par-
ticles of arbitrary shape in a Newtonian fluid. By representing a sin-
gle particle in suspension as a distribution of Stokeslets over a line
enclosed by the particle body, Batchelor determined expressions
for the resultant force required sustaining translational motion
and the resultant couple required to sustain rotational motion.
Dinh and Armstrong (1984) extended Batchelor’s theory to account
for the orientation state of elongated particles and its effect on the
bulk stress within the suspension. This was accomplished by
assuming that the orientation state of the suspension can be com-
pletely described by a known orientation distribution function, W,
such that the probability of finding fibers oriented between the an-
gles / and /þ o/ is Wð/Þo/. By linearizing the flow field around
the particle they were able to equate Batchelor’s constitutive equa-
tion to a new constitutive equation; one that is proportional to the
fourth-order moment tensor of W. The proportionality constant is
referred to as the effective viscosity of the suspension. Shaqfeh and
Fredrickson (1990) derived asymptotic expressions for the effec-
tive viscosity of dilute and semi-dilute suspensions of rods in a
Newtonian fluid. For semi-dilute fiber suspensions, they express
the fiber stress as follows:

sfiber ¼ lcr2 _c : hppppi
lnð1=cÞ þ lnðlnð1=cÞÞ þ 1:439

ð2Þ

where c is the volume fraction of fibers within the suspension
which can be related to the concentration parameter, nL3 as
c ¼ 4pnL3

3r2 ; l is the viscosity of the suspending fluid and _c is the fluid
strain rate tensor, defined as

_c ¼ ðruþruTÞ ð3Þ

The remaining term that needs to be defined in Eq. (2) is the
fourth-order moment of the orientation distribution function W.
It is often referred to as the fourth-order orientation tensor and
is defined as

hppppi ¼
Z

pipjpkplWð/Þd/ ð4Þ

where p is a unit vector pointing in the direction parallel to the axis
of the fiber, that is

p ¼
cos / sin h

sin / sin h

cos h

2
64

3
75 ð5Þ

where / is the projected angle of the fiber in the xy-plane and h is
the angle between the fiber and the z-axis, see Fig. 2.

The analytic theory of fiber motion in Newtonian flows is also
well established. Jeffery’s equation of motion (Jeffery, 1922) for a
single rigid ellipsoid in an unbounded flow forms the basis for most
of this work. For cases above the dilute limit, quantitative relation-
ships between the suspension orientation state and processing
conditions have shown that the problem formulation should ac-
count for the fact that fibers orient in response to gradients in
the flow and disorient in response to hydrodynamic fiber–fiber
interactions (e.g. Koch, 1995; Folgar and Tucker, 1984; Rahnama
et al., 1995; Altan et al., 1989; Lipscomb and Denn, 1988; Jackson
et al., 1985). To help address this issue, Folgar and Tucker (1984)
model fiber–fiber interactions as randomly occurring events
resulting in a behavior which seemingly mimics a diffusion-type
process. In this approach, these authors use an empirically deter-
mined rotary diffusion coefficient, Dr, whose value is unknown a
priori and must be determined through experiment. They pro-
posed, through dimensional analysis, a simple relationship in
which Dr is linearly proportional to the magnitude of the rate of
strain tensor, k _ck. For two dimensional flow in a linear contraction,
Dr can be expressed as

Dr ¼ CIk _ck ð6Þ

where CI is traditionally called the interaction coefficient and is re-
lated to a number of suspension parameters such as concentration,
aspect ratio, and fiber length.

Recently, researchers have been making great efforts to perform
3D fiber orientation predictions for 2D and 3D flows inside com-
plex geometries using a fully coupled model of fiber orientation
(e.g. VerWeyst and Tucker, 1999, 2002; Lipscomb and Denn,
1988; Lin and Zhang, 2002). The difficulty with this approach lies
in the large computational domain required to resolve both the
spatial and orientation domains when directly computing the ori-
entation distribution function. In order to deal with this problem,
researchers have had to rely on the use of orientation tensors to
predict fiber orientation as opposed to a direct computation of
the orientation distribution function (e.g. Jackson et al., 1985;
VerWeyst and Tucker, 1999, 2002). The second-order orientation
tensor, hppi, for the orientation distribution function, W, contains

Fig. 1. A generalized industrial headbox.

Fig. 2. The orientation of a fiber with respect to flow in a linear contraction. / is the
angle of the fiber projected into the xy-plane and the h is the angle of the fiber with
respect to the z-axis.
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