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Discrete element method (DEM) is prominent for studying granular materials at particle scale. However,
how to model non-spherical particles in DEM is still challenging. In light of the present contact detection
algorithms in the literature, common normal (CN) and geometric potential (GP) are two methods used
for particles with smooth surfaces. Yet it has been long believed that CN gives erroneous results while GP
is more preferable since they were firstly proposed for ellipsoidal particles decades ago. A revisit of CN in
this work identifies two problems in the original CN, and then a new CN is proposed which can overcome
these problems. Based on the comparison to sub-particle scale finite element analyses, the new CN has
been further shown to be able to predict the contact plane more accurately than the original CN and GP.
Such an advantage is found for the modelling of ellipsoidal and superquadric particles. The study not only
proposes an improved CN algorithm but also demonstrates that CN should receive more attentions in
DEM, though GP is now much more widely used.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Granular materials are familiar in different industrial applications,
yet their fundamentals are still far from well understood [1], calling
effective methods to investigate the underlying mechanisms of their
complicated behaviors. Discrete element method (DEM) [2] is a good
answer to the challenge, as it provides a promising approach to study
these materials at particle scale [3–5]. Although DEM can simulate the
behaviors of individual particles based on first principles, the inter-
particle forces need to be accurately calculated to guarantee the simula-
tion is comparable to reality [6]. Contact force is themajor inter-particle
force in most granular materials. Currently, the method for calculating
contact force between spherical particles has been firmly established
[3], yet those for non-spherical particles are still open due to the compli-
cated influence of particle shape and orientation [7,8]. Different
methods have been exploited to calculate the contact force between
non-spherical particles, which often depend on how the particle shape
is represented [8]. For the particles whose surfaces can be described
by continuous function representation (CFR), the contact force between
them can be obtained by finding the overlap from the simultaneous
equations of their surfaces. Two methods have been widely used in
the literature to calculate such overlap [8], namely, the so-called
geometric potential (GP) method and common normal (CN) method
[9]. GP is based on finding the deepest penetrations, whereas CN on
finding the parallel tangent planes. In previous studies it was tested

that CN is not favorable in terms of accuracy and efficiency than
GP [9], and hence GP is more commonly used in the current DEM
simulations [8–12].

In this paper, we revisit the original CN algorithm proposed for
ellipsoidal particles. Interestingly, we find that the previous equations
contain errors and also may be ill-posed. These problems can probably
be responsible for the relative large errors in previous tests. To
overcome these problems, we propose a new algorithm, which is
shown to be able to give correct solutions. By comparing the results to
those from sub-particle finite element analyses,we further demonstrate
that this new CN is more accurate than GP in the prediction of contact
plane. Finally, we show that the new CN can also be extended to other
CFR non-spherical particles, such as superquadric particles, for which
it is also better than GP in predicting the contact plane. Our work not
only proposes an improved CN algorithm, but also demonstrates
that CN should receive more attentions though GP is now much more
widely used.

2. Methods and results

2.1. Original common normal algorithm and its problems

As illustrated in Fig. 1, CN method is based on finding two points
respectively on the two overlapping particles, i.e., p1 on particle 1 and
p2 on particle 2, for which their gradient vectors on the surfaces and
the vector passing through them are aligned. Here we define n1 as the
unit vector of the gradient of p1, n2 the unit vector of the gradient of
p2, and dCN the vector from p1 to p2.
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The original CN algorithm was proposed by Lin and Ng [9] for
ellipsoidal particles. They also presented six simultaneous equations to
mathematically satisfy the geometric condition, given by:

Γ1 x1; y1; z1ð Þ ¼ 0 ð1Þ

Γ2 x2; y2; z2ð Þ ¼ 0 ð2Þ

∂Γ1 x1; y1; z1ð Þ
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,
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Δ2 ¼ 0 ð6Þ

where (x1,y1,z1) and (x2,y2,z2) are the coordinates of the points p1 and
p2 on particles Γ1 and Γ2 respectively;Δ1andΔ2 are the normal values of
the gradient vectors of p1 and p2 respectively; Δ is the normal value
of dCN; and ℝ1 and ℝ2 are the residues related to the solutions of
Eqs. (5) and (6), respectively.

Evidently, Eqs. (3) to (6) are responsible for aligning n1, n2 and dCN.
However, there are two problems in these equations. First, using
absolute operator in Eqs. (5) and (6) violates the strict definition for
two vectors to be in the same or opposite directions. In particular,
as n1 should be opposite to dCN while n2 parallel to dCN, Eqs. (5) and
(6) should be corrected as:

ℝ3 ¼ x2−x1
Δ

þ ∂Γ1 x1; y1; z1ð Þ
∂x

,
Δ1 ¼ 0 ð7Þ

ℝ4 ¼ y2−y1
Δ

−
∂Γ2 x2; y2; z2ð Þ

∂y

,
Δ2 ¼ 0 ð8Þ

whereℝ3 andℝ4 are the residues related to the solutions of Eqs. (7) and
(8), respectively. Secondly, these equations are focused on comparing
the x and y components of the vectors, while the equality of the z
component is expected to be implicitly satisfied. As these equations
are solved by numerical iterations, practically there are possibilities
that the solutionmay have very small errors on the x and y components

but relatively larger errors on the z component. For example, the follow-
ing equation for z dimension is expected to be satisfied besides
Eqs. (5) and (6), which however is not included in the equation set:

ℝ5 ¼ z2−z1
Δ

þ ∂Γ1 x1; y1; z1ð Þ
∂z

,
Δ1 ¼ 0 ð9Þ

where ℝ5 is the residue related to the solution of Eq. (9).
Here we use some examples to demonstrate the aforementioned

two problems. We consider two identical spheroid (axis-symmetrical
ellipsoid) particles in contact. As shown in Fig. 2(a), spheroid 1 is fixed
at the origin point without any rotation, while spheroid 2 with the
same shape is pushed towards it through a line L12 defined by the zenith
θL and azimuth angles φL. Spheroid 2's orientation is defined by three
Euler angles (ϕ, θ, φ) in X-convention, i.e., it firstly rotates by ϕ about
the Z-axis, then by θ about the new X-axis, and finally by ψ about the

new Z-axis. The overlap ratio is defined as δh ¼ hmax−L12
hmax

, where hmax is
the maximum distance between the centroids of two particles before
they contact. Note hmax is dependent on the orientation of line L12
as well as the Euler angles. Table 1 lists all the parameters for the tested
cases. For all the cases, φL = 0 and φ= 0, and the aspect ratio α= c/a,
where a, b and c are the half lengths of the particles along their three
principal axes respectively, and for spheroids a = b. Note the cases are
divided into four groups (G1 to G4). For the cases in a group, all the
parameters are the same except for the overlap ratio.

Using software Mathematica [13], we have programmed scripts to
solve Eqs. (1)–(6) to find (x1, y1, z1) and (x2, y2, z2). The solution algo-
rithm is formulated on the basis of Line-Search Newton method [14]
as detailed in the Appendix A. The solutions of the example cases are
listed in Table 2. Using the solutions the angles among dCN, n1 and n2

are calculated and shown in Fig. 3(a). Evidently, for all groups, the
original CN gives erroneous results as dCN may not align with n1 or n2.
To explore the reason for the misalignment, we check the residues of
the equations in Table 2. From the very small values of ℝ1 and ℝ2 one
can tell that these solutions actually satisfy Eqs. (5) and (6). However,
the residues ℝ3, ℝ4 and ℝ5 cannot all be close to zero, showing the
corrected Eqs. (7) and (8), and the implicit Eq. (9) are not all satisfied.
Specifically, in all these cases, ℝ5 is always very large, showing that
the equality of the z component cannot always be satisfied with the
original CN algorithm, which may be critically responsible for the erro-
neous results. In addition, in some cases ℝ3 and/or ℝ4 are also large,
showing the incorrect using of the absolute operator in Eqs. (5) and
(6) also affect the results. These residues clearly demonstrate that the
original equations are not properly set to guarantee the solution can
satisfy CN concept due to the problems identified.

2.2. New common normal algorithm

To overcome the problems in the original CN, we propose a new
algorithm in this work. Before that we should note that there are differ-
ent realizations of common normal concept in the literature [15,16].
For example, Cleary et al. [15] reduced the problem from finding two
points to one point by reverse the temporal evolutions of the two parti-
cles to themomentwhen they are just in contact at a single point, while
Wellmann et al. [16] transformed the problem to the minimization
of the distance between p1 and p2. Comparably Lin and Ng's algorithm
is more straightforward and independent of history of particles
movements. Therefore here we follow Lin and Ng's one.

Without loss of generality, two major criteria in common normal
concept are rewritten as follows:

i. According to CN concept, n1 and n2 shown in Fig. 1 are anti-parallel to
each other, given by:

∇Γ1 x1; y1; z1ð Þ
∇Γ1 x1; y1; z1ð Þk k þ

∇Γ2 x2; y2; z2ð Þ
∇Γ2 x2; y2; z2ð Þk k ¼ 0 ð10Þ

Fig. 1. 2D schematic visualization of common normal method.
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