
Powder Technology 324 (2018) 18–35

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r .com/ locate /powtec

Grains3D, a flexible DEM approach for particles of arbitrary convex
shape - Part II: Parallel implementation and scalable performance

Andriarimina Daniel Rakotonirinaa, Anthony Wachsb, c,*
a IFP Energies nouvelles, Fluid Mechanics Department, Rond-point de l’Echangeur de Solaize, BP 3, Solaize 69360, France
b Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
c Departement of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada

A R T I C L E I N F O

Article history:
Received 11 September 2016
Received in revised form 22 September 2017
Accepted 19 October 2017
Available online 24 October 2017

Keywords:
Granular flow
Discrete Element Method
Angular particles
Parallel computing

A B S T R A C T

In [1] we suggested an original Discrete Element Method that offers the capability to consider non-
spherical particles of arbitrary convex shape. We elaborated on the foundations of our numerical method
and validated it on assorted test cases. However, the implementation was serial and impeded to examine
large systems. Here we extend our method to parallel computing using a classical domain decomposi-
tion approach and inter-domain MPI communication. The code is implemented in C++ for multi-CPU
architecture. Although object-oriented C++ offers high-level programming concepts that enhance the ver-
satility required to treat multi-shape and multi-size granular systems, particular care has to be devoted to
memory management on multi-core architecture to achieve reasonable computing efficiency. The paral-
lel performance of our code Grains3D is assessed on various granular flow configurations comprising both
spherical and angular particles. We show that our parallel granular solver is able to compute systems with up
to a few hundreds of millions of particles. This opens up new perspectives in the study of granular material
dynamics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Discrete Element Method (DEM) based simulations are a very
powerful tool to simulate the flow of a granular media. The founda-
tions of the method were introduced by Cundall and Strack [2] in the
late seventies. Originally developed for contacts between spherical
particles, the method was later extended to polyhedra by Cundall
in 1988 [3]. The conceptual simplicity combined with a high degree
of efficiency has rendered DEM very popular. However, there are
essentially still two bottlenecks in DEM simulations: (i) the non-
sphericity of most real life particles and (ii) the generally large
number of particles involved even in a small system.

In [1] we addressed issue (i), i.e., the non-sphericity of particles
by reviewing the various existing techniques to detect colli-
sions between two non-spherical particles and by suggesting our
own collision detection strategy that enables one to consider
any convex shape and any size. Issue (ii) can be tackled in two
different and complementary ways. The former involves improv-
ing the computational speed of classical serial implementations

* Corresponding author at: Department of Mathematics, University of British
Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada.

E-mail address: wachs@math.ubc.ca (A. Wachs).

of DEM. This can be achieved by a higher quality programming
and smarter algorithms, but there is admittedly a limit in that
direction, even with the most advanced implementations. The lat-
ter involves dividing the work load between different computing
units and hence using distributed computing. Nowadays, there are
two (potentially complementary) technologies for DEM distributed
computing: CPU [4–9] vs GPU [9–16]. Both technologies have assets
and drawbacks. Interestingly, the definition of large-scale comput-
ing fluctuates quite a lot from one publication to another publication
as well as changes with time and fast-evolving supercomputing
resources. While GPU is parallel in essence (multi-threaded), fast
on-chip memory is limited in size and global memory access is
very slow, which can result in a weak performance of the code [11].
Besides, the built-in parallelism of GPU is not yet fully designed for
multi-GPU computations, which may limit the overall performance
to that of a single GPU, in particular in terms of system size, i.e.,
number of particles. However, recent developments have shown
that reasonable scalability can be achieved with single- and multi-
GPU computations, as summarized in Table 1. Please note that, as
emphasized by Shigeto and Sakai [9], the speed ratio 1 GPU/1 CPU
in Table 1 and in general one-to-one GPU vs CPU comparisons might
not always be fair.

CPU-based DEM codes generally exhibit no limit in number
of communicating CPUs (cores) and hence no limit in number of

https://doi.org/10.1016/j.powtec.2017.10.033
0032-5910/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.powtec.2017.10.033
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/powtec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2017.10.033&domain=pdf
mailto:wachs@math.ubc.ca
https://doi.org/10.1016/j.powtec.2017.10.033


A. Rakotonirina, A. Wachs / Powder Technology 324 (2018) 18–35 19

Table 1
Summary of recent contributions to DEM computations on GPUs. “nr” stands for “not
reported”.

Authors Max number
of GPUs

Max number
of particles

Speed ratio
1 GPU/1 CPU

Xu et al. [16] 270 10,000,000 nr
Washizawa and Nakahara [13] 1 131,072 6
Shigeto and Sakai [9] 1 1,280,000 0.87 − 3.4
Tsuzuki and Aoki [12] 512 129,000,000 nr
Gan et al. [15] 34 10,000,000 10

particles, provided the scalability is maintained at a reasonable level.
Communications between cores is achieved using MPI [17]. Although
computations with up to a few tens of millions of particles are
emerging with GPU-based implementations [10-12,15], simulations
with up to a few billions of particles can be envisioned with CPU-
based implementations, provided computational practitioners have
access to large supercomputers with many thousands of cores [6–8].
The forthcoming new GPU technology is likely to offer similar
parallel computing capabilities as the CPU technology, either by
improving inter-GPU communications without using CPUs or by
speeding up data exchange between GPUs and CPUs. At the time
we write this article, this enhanced GPU technology is not available
yet. Multi-CPU implementations already have or will soon have
to address other challenges related to the evolution from multi-
core to many-core technology, i.e., computing nodes have more
CPUs that each have more cores. The current multi-core technol-
ogy also poses tough challenges in terms of memory access and
management (that we partly address in this work) but the next
generation many-core technology will render these challenges even
more crucial. One option to address them involves developing hybrid
shared/distributed computing models, i.e., shared on a node with
OpenMP and distributed among nodes using MPI [18]. These hybrid
implementations might have been optional so far with 8, 16 or even
24 cores per node only, but may become mandatory in the future
as the number of cores per node is likely to keep on increasing.
Another option is to rethink the programming paradigm, both for
many-CPU [19] and many-GPU [20] computing. This is an ongoing
effort in the scientific computing community.

DEM is used both in dry granular flow computations and in
particle-laden flow computations. Collision detection and resolution
is generally the most time-consuming part of a DEM computation.
When particles are immersed in a fluid, hydrodynamic interac-
tions reduce the number of collisions between particles and hence
computations (corresponding to the DEM solver only, not the
solution of the fluid mass and momentum conservation equations)
for the same number of particles are faster or conversely a higher
number of particles can be considered for the same computing time.
Fluidized bed simulations are a typical case of a relatively low num-
ber of collisions with respect to the number of particles in the system
once the bed is sufficiently fluidized, e.g., the inlet velocity is at least
2–3 times the minimum fluidization velocity. In a simple configu-
ration of fluidization in a box, Pepiot and Desjardins [21] perform
computations with up to 382 million of spheres on 4096 cores with
a parallel efficiency of 85%. In the field of particle-laden flow simu-
lations, let us mention the long-term effort of the National Energy
Technology Laboratory in the development of the open source code
MFIX. In the past few years, MFIX, which has historically been known
for its Two-Fluid model (MFIX-TFM) and Particle in Cell model
(MFIX-PIC), has been enriched by an Eulerian/Lagrangian model (also
called DEM-CFD) that relies on a DEM solver for the Lagrangian
tracking of particles with collisions. The performance of the paral-
lel DEM solver involved in the so-called MFIX-DEM model is ana-
lyzed by Gopalakrishnan and Tafti in [22]. Computations with up to
10 million of spheres in a fully 3D fluidized bed configuration on

up to 256 cores with a reasonably satisfactory parallel efficiency are
presented. Using the MFIX-DEM model, Liu and Hrenya [23] also
investigate its parallel performance in pseudo-2D rectangular flu-
idized beds. Computations with up to 10 million of spheres on up to
about 80 cores show a satisfactory scalability provided the number
of particles per core is 105. Liu and Hrenya also address the impor-
tant question of the physical time that can be computed versus the
number of particles that can be computed and show that the balance
is controlled by the domain size to particle size ratio, as smaller par-
ticles require smaller time steps to resolve collisions. MFIX possesses
an active and large community of users and the literature comprises
numerous works using MFIX to examine particle-laden flows and in
particular fluidized bed configurations. Among many others, let us
mention the recent work of Yang et al. [24,25] using MFIX-DEM to
study the flow dynamics in a double slot-rectangular spouted bed
that contains around 2.6 million of spheres. Finally, Gel et al. [26]
recently attempted to improve the parallel performance of MFIX
by partly refactoring the code at a rather deep programming level
to better fit modern high-performance computing architectures.
Significant computing time reductions, up to 8 times improvement,
are obtained. This is in line with our effort, presented later in this
work, in refactoring our own code Grains3D to attain a satisfactory
parallel performance.

Our goal in this paper is to elaborate on a simple domain decom-
position based parallel extension of our granular code Grains3D
and to assess its computing performance on systems of up to a
few hundreds of millions of particles. Please note that most ref-
erences given above considered spheres or spheroids. The main
strength of our implementation is the ability to combine our sim-
ple but efficient parallel implementation to our collision detection
strategy for non-spherical and angular particle shapes [1], and hence
to target large-scale DEM computations of many millions of parti-
cles of, e.g., polyhedral shape. In Section 2, we quickly recall the
features of our numerical model as already explained in [1]. We
then present our parallel strategy in Section 3. In Section 4 we mea-
sure the computing performance of our parallel implementation in
various granular flow configurations (particle shape, particle load
by core, weak scalability). Finally, we discuss parallel computing
performances exhibited by Grains3D in Section 5 and highlight the
remaining intrinsic limitations of Grains3D and how to relax them.

2. Numerical model

The motion of the granular material is determined by applying
Newton’s second law to each particle i ∈< 0, N − 1 >, where N is the
total number of particles. The rigid body motion assumption leads to
the decomposition of the velocity vector v as v = U+y∧R, where U,
y and R denote the translational velocity vector of the center of mass,
the angular velocity vector of the center of mass and the position
vector with respect to the center of mass, respectively. The complete
set of equations to be considered is the following one:

Mi
dUi

dt
= F i (1)

Ji
dyi

dt
+ yi ∧ Jiyi = Mi (2)

dxi

dt
= Ui (3)

dhi

dt
= yi (4)

where Mi, Ji, xi and hi stand for the mass, inertia tensor, center
of mass position and angular position of particle i. Fi and Mi are
the sum of all forces and torques applied on particle i, respectively,



Download English Version:

https://daneshyari.com/en/article/6675761

Download Persian Version:

https://daneshyari.com/article/6675761

Daneshyari.com

https://daneshyari.com/en/article/6675761
https://daneshyari.com/article/6675761
https://daneshyari.com

