

Contents lists available at ScienceDirect

Powder Technology

journal homepage: www.elsevier.com/locate/powtec

A study on the carbonization and alloying process of MnO₂ by methane-hydrogen gas mixture in the presence of Fe₂O₃

Bingbing Liu, Yuanbo Zhang *, Zijian Su, Manman Lu, Guanghui Li, Tao Jiang

School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, Hunan, PR China

ARTICLE INFO

Article history:
Received 23 June 2017
Received in revised form 26 September 2017
Accepted 1 November 2017
Available online 5 November 2017

Keywords: MnO₂ Fe₂O₃ CH₄-H₂ gas mixture Carbonization Ferromanganese alloy

ABSTRACT

Carbonization of pure MnO₂ by CH₄-H₂ gas mixture with various CH₄/(CH₄ + H₂) molar ratios in the temperature range of 900-1250 °C had been performed in our previous work. This study further investigated the carbonization and alloying process of MnO₂ by CH₄-H₂ gas mixture in the presence of Fe₂O₃ at 900-1300 °C using XRD, optical microstructure, SEM-EDS and phase diagram analyses. Carbonization test of pure Fe₂O₃ was also conducted to understand the effect of Fe_2O_3 on the carbonization of MnO_2 more explicitly. It was found that Fe_2O_3 could be carbonized to Fe_3C at 900–1150 °C. The Fe_2O_3 briquettes began to melt at 1100 °C and a large amount of Fe-C melts appeared as the temperature went up to 1150 °C. When the MnO₂ + 25 wt%Fe₂O₃ briquettes were reduced at 900-1000 °C in CH₄-H₂ gas mixture, the Fe₂O₃ was preferentially carbonized to Fe-C phase while the MnO₂ was only reduced to MnO. The formation of Fe-C phase was beneficial to the carbonization of MnO since the carbonization temperature of MnO can decrease from 1100 °C to 1000 °C. The carbonization degree of MnO was dramatically accelerated over 1100 °C due to the transformation of Fe-C phase from solid state to melts. Morphology analysis indicated that the MnO core was wrapped by the shell of Fe-C melts. The alloying process of Mn-Fe-C was conducted through the elements migration of Fe and Mn between the core and shell. At 1300 °C, the Mn-Fe-C alloy turned to melt and aggregated since the highest melting temperature of the Mn-C-25 wt% Fe system was only 1274 °C. Finally, a ferromanganese crude alloy with 68-72 wt% Mn, 20-25 wt% Fe and 6.0-8.0 wt% C was obtained when the $MnO_2 + 25$ wt% Fe_2O_3 briquettes were carbonized by CH₄-H₂ gas mixture at 1300 °C for 60 min.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Minimizing carbon dioxide emissions is considered to be an important subject in the Iron & Steel industry from the viewpoint of green-house gas problem due to the present large consumption of solid carbonaceous materials [1–4]. Hydrogen and methane are two kinds of clean energy resources, which are used widely as reductants for the reduction of oxides [5–13], such as iron ores, SnO_2 , NiO, SiO_2 , and so on. These studies demonstrate the reduction of oxides by H_2 , CH_4 or gas mixture is clean and efficient process.

Currently, ferromanganese alloys are predominantly produced from the manganese oxide ores reduced by solid carbonaceous materials [14–16]. Some attempts were also made to investigate the reduction feasibility of manganese oxide ores by $\text{CH}_4\text{-H}_2$ gas mixture [17–19]. The pre-reduction behavior of Groote Eylandt (Australia) and Wessels (South Africa) manganese ores were conducted in a fixed bed laboratory reactor in the temperature range $1000-1200\,^{\circ}\text{C}$ [18,19]. The results demonstrated that the manganese oxide ores can be reduced to Mn-

E-mail addresses: sintering@csu.edu.cn, zybcsu@126.com (Y. Zhang).

Fe carbides by $\mathrm{CH_4\text{-}H_2}$ gas mixture. However, the previous researches were mainly concentrated on the pre-reduction degree of the manganese ores and the reduced products were not characterized in detail. If ferromanganese alloy can be achieved during the reduction of manganese oxide ores by $\mathrm{CH_4\text{-}H_2}$ gas mixture directly, it will be a new and promising gas-based reduction technique which is an alternative process for the reduction of manganese ores by solid carbonaceous materials.

In China, the main valuable oxides in the manganese oxide ores are MnO₂ and Fe₂O₃ [20,21]. Determination of carbonization of Fe₂O₃ and MnO₂ by CH₄-H₂ gas mixture, and the interactive effect between them are key scientific problems during the carbonization of manganese oxide ores. Although some investigations have been carried out on the reduction of Fe₂O₃ to Fe₃C by CH₄ or CH₄-H₂ gas mixture, the reduction temperature ranges are generally below 1000 °C. Zhang and Ostrovski [7] researched the Fe₃C formation through reducing the iron ores by CH₄-H₂ gas mixture in the temperature range of 600–925 °C, and also determined the stable existing temperature range of cementite. The kinetics of hematite reduction and formation of cementite in a CH₄-H₂ gas mixture at 700–800 °C were studied by Nasiri et al. [8]. Ghosh et al. [9] reported the reduction of porous and dense pellets of ferric oxide with CH₄ in the temperature range of 800–1025 °C. Because the carbonization of

^{*} Corresponding author at: Peace Building, No. 248, School of Minerals Processing & Bioengineering, Changsha, Hunan, PR China.

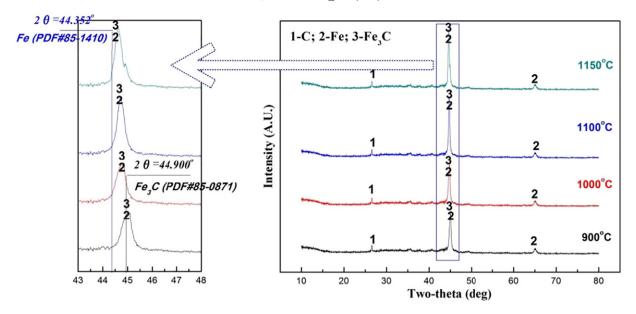


Fig. 1. XRD patterns of Fe₂O₃ briquettes carbonized at different temperatures.

manganese oxide ores to carbides by CH_4 - H_2 gas mixture requires higher temperatures higher than 1000 °C, it's essential to know the carbonization behavior of pure Fe_2O_3 and MnO_2 at elevated temperatures and the interactive effect of Fe_2O_3 and MnO_2 in order to understand distinctly the carbonization and alloying process of manganese oxide ores.

Investigation on the carbonization of pure MnO_2 under various molar ratios of CH_4 - H_2 atmosphere at temperature range of 900-1250 °C has been clarified in our previous work [22]. The results indicated that MnO_2 could be carbonized to Mn_7C_3 by CH_4 - H_2 gas mixture above 1100 °C under 10 vol% CH_4 + 40 vol% CH_4 + 50 vol% CH_4 N₂. With

regard to the interactive effect between Fe_2O_3 and MnO_2 , some works have been carried out to determine the effect of MnO_2 on the reduction of iron ore pellets by CO gas during the ironmaking process. El-Geassy et al. [23,24] reported the influence of 2.0–6.0 wt% MnO_2 on the reduction behavior and structural changes of Fe_2O_3 briquettes with CO at $800-1100\,^{\circ}\text{C}$, and also investigated the effect of MnO_2 on the reduction kinetics and catastrophic swelling of Fe_2O_3 briquettes. Kim and Jung [25] investigated the effect of chemically pure iron powder on the carbothermal reduction of MnO by graphite in the temperature range of $1100-1300\,^{\circ}\text{C}$. It was demonstrated that the addition of iron affected

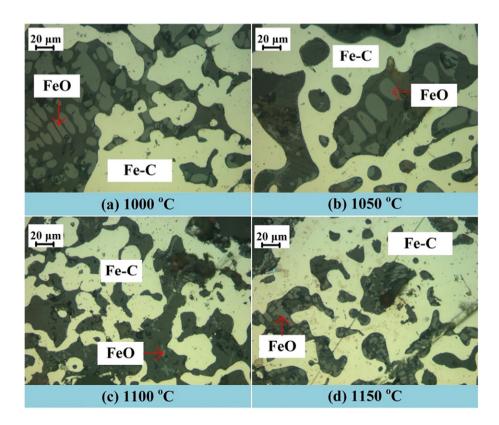


Fig. 2. Optical microstructures of Fe₂O₃ briquettes carbonized at different temperatures.

Download English Version:

https://daneshyari.com/en/article/6675816

Download Persian Version:

https://daneshyari.com/article/6675816

<u>Daneshyari.com</u>