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a b s t r a c t

This paper is designated to gain further insight into the physical mechanisms of thermal droplet actuation

on a wall through direct numerical simulation. Classical theory states that free droplets in a nonuniform

temperature field always move towards the hot side. However, when attaching a droplet to a wall with a

nonuniform temperature gradient, lubrication theory explains how such a droplet moves towards the colder

side. This paper aims at further investigating and clarifying the physical mechanisms and acting forces in the

environment of a nonuniform temperature field and offers some explanations. For the numerical simulations

of a droplet attached to a wall with a linear temperature gradient and larger contact angles, the full Navier–

Stokes equations and energy equation are solved in a Volume of Fluid framework. The solver is extended

with a dynamic contact angle treatment and thoroughly validated. The droplet motion is studied both in two

and three dimensions, where a movement towards the cold and the warm side can be observed. The forces

acting in such a setting are identified and interpreted. A decomposition of the jump conditions shows that

the tangential stress due to the temperature dependent surface tension alone would lead to a motion towards

the cold side, whereas the normal component alone would move the droplet to the opposite direction. The

differences between two- and three-dimensional simulations show that the problem at hand is clearly three-

dimensional.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Droplet actuation is attracting widespread attention because of its

promising potential in droplet-based devices developed for various

applications in industry (Darhuber and Troian, 2005). Small droplets

attached to a substrate can be actuated by numerous effects, includ-

ing thermal, chemical, electrochemical, electrical, etc. forces. Such ac-

tuated droplets are of special interest in microgravity environments

due to the lack of gravitational forces as the driving mechanisms. De-

spite this relevance, not all physical effects are fully understood, es-

pecially in the context of contact line dynamics. In the present work,

the temperature dependence of the surface tension is used as the

driving force for the droplet movement. This effect is called thermal

Marangoni stress.

The movement of small droplets under the influence of gravity

and inhomogeneous temperature has been studied for nearly a cen-

tury. Fedosov derived the stationary velocity of a rising droplet due
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to a linear temperature field in 1948 in his PhD Thesis, which was

published in 1956 in a Russian journal (Fedosov, 1956) and only

translated recently (Fedosov, 2013). In Young et al. (1959), Young,

Goldstein and Block derived the well known steady migration veloc-

ity of a droplet under the influence of gravity and a temperature gra-

dient. Since then, droplet migration has been the subject of numerous

analytical, numerical and experimental parameter studies concern-

ing the influence of physical quantities on the steady migration ve-

locity (see e.g. Subramanian and Balasubramaniam, 2001; Haj-Hariri

et al., 1997; Nas and Tryggvason, 2003; Ma and Bothe, 2011; Hadland

et al., 1999; Thompson et al., 1980). In all these studies, it is accepted

that the droplet always moves towards the hot region. This is sup-

ported by analytical solutions for the velocity field in cases when a

Stokes flow can be assumed (Fedosov, 2013; Young et al., 1959).

However, attaching such a droplet to a wall with a linear lateral

temperature gradient, the droplet migrates mostly towards the cold

side as stated in Darhuber and Troian (2005). Only very recently a nu-

merical study showed that for large contact angles, such an attached

droplet can also migrate towards the hot side. A thorough overview

including thermal droplet actuation for experimental, analytical and

numerical studies up to 2005 can be found in Darhuber and Troian
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(2005). So far, most investigations, including experimental studies,

covered only the parameter set where the droplet moves towards the

cold region, namely fluid pairings which exhibit small contact angles.

In this region, where lubrication theory is valid, analytical, experi-

mental, and numerical studies show that the droplet either moves

to the cold side or does not move at all (see e.g. Gomba and Homsy,

2010; Smith, 1995). The latter case may appear depending on the foot

length of the droplet and the magnitude of the temperature gradient

as shown in Pratap et al. (2008).

Numerical solutions of the full Navier–Stokes equations for a mi-

grating droplet attached to a wall were only done within the last

few years, opening a new field. Tseng et al. conducted in Tseng et al.

(2004) three-dimensional simulations, additionally to their experi-

ments. They studied contact angles smaller than 90°, but did not ob-

tain quantitative agreement between their simulations and experi-

ments. In the work of Nguyen and Chen (2010), droplet migration

on a wall for squalane and silicon oil droplets was studied in two

dimensions for larger contact angles with an extended FEM Solver

(COMSOL Multiphysics®). Although an interesting study, they appar-

ently neglected the interfacial gradient of the surface tension in the

momentum jump condition which should influence the movement

significantly. Only very recently, Sui (2014) tackled the question if

droplets attached to a wall with a lateral temperature gradient can

migrate towards both sides. He found that they can indeed move to-

wards the cold or hot region, or even not move at all, depending on

the contact angle and the viscosity ratio between inner and outer

fluid. Furthermore, he studied the influence of contact angle hystere-

sis. His simulations are all two-dimensional. For a comparison to ex-

periments, which has yet to be conducted for larger contact angles,

fully three-dimensional simulations are currently missing. Moreover,

to obtain the desired deeper understanding of the direction-change, a

numerical algorithm that is capable of accurately capturing the mul-

tiphysics, especially contact line dynamics and variable surface ten-

sion, is mandatory.

The numerical studies in the present work are carried out with

the Volume of Fluid in-house code Free Surface 3D (FS3D) with piece-

wise linear interface reconstruction (PLIC,[20]). The thermocapillary

forces are determined as in Ma and Bothe (2011). The contact an-

gle at the wall is ensured by an appropriate boundary condition, in-

cluding the normal vectors and the curvature calculation. Within the

employed balanced CSF model (Francois et al., 2006; Renardy and

Renardy, 2002), the curvature is determined via a height function

algorithm (Popinet, 2009). Thus, the height functions are altered in

such a way that the contact angle is matched, where the dynamic

contact angle is determined with Kistler’s correlation ((Berg, 1993),

Chapter 6). The stress singularity at the contact line is relaxed by the

inherent slip of the employed staggered grid as discussed before in

Renardy et al. (2001). Since this slip is mesh dependent and the em-

pirical correlation valid on a larger scale than the grid size, a similar

approach to the one by Afkhami et al. (2009) is used. In imitation

of hydrodynamic theory, where different regions and corresponding

contact angles are defined, the macroscopic dynamic contact angle

is transformed to the smaller grid scale. In this way, the large slip

length and thereby large contact line velocity is counteracted. In ad-

dition, this algorithm contradicts the strong mesh dependency of the

simulation results. For wider overviews on contact line dynamics we

refer to the books and reviews (Berg, 1993; Shikhmurzaev, 2007;

Sui et al., 2014; Blake, 2006) and to the numerous references given

there.

Employing this extended solver, the influence of different physi-

cal parameters on the droplet behavior is studied. An in-depth look

at the acting forces and physical mechanisms allows a deeper phys-

ical understanding of the droplet behavior. Apparently for the first

time, three-dimensional simulations of thermal droplet migration

on a wall for large contact angles are done and compared to two-

dimensional results.

Mathematical and numerical model

Governing equations

We consider incompressible two-phase flow of immiscible New-

tonian fluids with a variable surface tension for the deformable inter-

face and additional heat transfer. The mathematical model applied

in this work is based on continuum mechanics and employs a sharp

interface, i.e. the deformable and moving interface between the two

phases is assumed to have zero thickness. The resulting two-phase

model consists of two sets of equations in the bulk phases and addi-

tional transmission conditions at the interface.

Inside the phases, the continuity and (incompressible) Navier–

Stokes equations hold, expressing the balance of mass and momen-

tum. The temperature is determined by solving the temperature form

of the energy balance equation. In addition, appropriate jump condi-

tions have to be formulated to complement the balances of mass, mo-

mentum and energy. To formulate these jump conditions, we denote

the liquid phase by the superscript l and the continuous gas phase by

g. We assume that there is no slip between the phases at the interface

so that the tangential velocities are continuous, and since no phase

change is bound to happen and the interface does not have mass in

this model, the normal velocities are also continuous. This results in

the following set of equations:

∇ · u = 0, in � \ � (1)

∂t(ρu) + ∇ · (ρu ⊗ u) = −∇p + ∇ · S + gρ, in � \ � (2)

∂t(ρcpT) + ∇ · (ρcpTu) = ∇ · (λ∇T) + S : ∇u, in � \ � (3)

[[u]] = 0, on � (4)

[[pI − S]] · n� = σκn� + σT∇�T, on � (5)

[[λ∇T ]] · n� = 0 on �. (6)

Here S = μ[∇u + (∇u)T] denotes the viscous stress tensor, u the

velocity, T the temperature, ρ the density, p the pressure, g the accel-

eration of gravity, cp heat capacity, and λ the thermal conductivity.

The temperature dependence of the surface tension σ is given by the

linear relationship known as the Eötvös rule, i.e.

σ(T) = σ0 + σT (T − T0), (7)

where the temperature coefficient σT = ∂σ/∂T of the surface tension

is negative as it is for most common liquids. Above, [[φ]] denotes the

jump of a quantity φ at the interface if the latter is crossed against

the surface normal n� .

When the fluid/liquid-interface is in contact with a solid surface,

the tangent planes form a contact angle θ at the contact line. In the

absence of external forces, the surface forces parallel to the wall act-

ing at the contact line are in balance, i.e.

σs, f = σs,l + σ f,l cos θe. (8)

Here θ e denotes the equilibrium contact angle, σ s, l the surface ten-

sion between the solid phase and the liquid, σ s, f the surface tension

between the solid phase and a fluid and σ f,l = σ . Eq. (8) is the well-

known Young’s equation.

One-field formulation

For the numerical solution in the Volume of Fluid (VOF) context,

an one-field formulation of the two-phase model is required, con-

taining only a single set of equations valid in both phases and at the
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