Accepted Manuscript

Oxidation of gaseous formal dehyde with ozone over MnOx/TiO $_2$ catalysts at room temperature (25 $\,$ C)

Minsu Kim, Eunseuk Park, Jongsoo Jurng

PII: S0032-5910(17)30828-8

DOI: doi:10.1016/j.powtec.2017.10.031

Reference: PTEC 12889

To appear in: Powder Technology

Received date: 20 June 2017 Revised date: 9 October 2017 Accepted date: 13 October 2017

Please cite this article as: Minsu Kim, Eunseuk Park, Jongsoo Jurng, Oxidation of gaseous formaldehyde with ozone over $MnOx/TiO_2$ catalysts at room temperature (25 C), Powder Technology (2017), doi:10.1016/j.powtec.2017.10.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Oxidation of Gaseous Formaldehyde with Ozone over MnOx/TiO₂ Catalysts at Room Temperature (25°C)

Minsu Kim^{a,b}, Eunseuk Park^a, and Jongsoo Jurng^{a,b}

- a Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
- b Graduate School of Energy and Environment (Green School), Korea University-KIST, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea

Abstract

The TiO_2 support materials were synthesized by a chemical vapor condensation (CVC) method and the subsequent MnOx/ TiO_2 catalysts were prepared by an impregnation method in our previous studies. Catalytic oxidation of formaldehyde on the MnOx/ TiO_2 catalysts was examined with ozone. Formaldehyde (HCHO) is a specific volatile organic compound (VOC) found in indoor air of both residential places and workshops and must be removed to improve air quality. Catalytic oxidative decomposition of HCHO at room temperature (25°C) is considered one of the most promising strategies for this. In this study, MnOx/ TiO_2 was prepared using chemical vapor condensation (CVC) as a HCHO ozone (O₃) catalyst that operates at 25°C. In this catalytic oxidation experiment, the HCHO of the gas stream on the MnOx/CVC- TiO_2 catalyst was completely oxidized to CO_2 with the addition of O₃. The removal efficiency of HCHO increased from 35.3% to 100% as the O₃:HCHO ratio increased from 1 to 5. CO_X selectivity also increased significantly with the increasing O₃:HCHO ratio. As the relative humidity (RH) increased, HCHO removal efficiency and mineralization to CO_2 increased. The HCHO removal efficiency increased to 100% at RH = 50%, whereas it was 85% at RH = 10%. The mineralization to CO_2 increased to 100% at RH = 80%, and was 15% at RH = 10%.

Download English Version:

https://daneshyari.com/en/article/6675868

Download Persian Version:

https://daneshyari.com/article/6675868

<u>Daneshyari.com</u>