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A B S T R A C T

Computational cell size is a crucial factor for accuracy in Computational Fluid Dynamics (CFD) - Discrete
Element Method (DEM) simulations of particle-fluid interactions. In the present study, we investigate how
simulation results change with computational cell size and mixture composition, for calculation of drag
force over a fixed bed containing a binary-sized particle mixture. To investigate the complex solution
convergence behavior, the simulation results are examined for several definitions of dimensionless compu-
tational cell size. Several regimes of consistent behavior, across three investigated mixtures, are identified
and a consistently optimal cell size range is identified. We find that both the difference between simu-
lated solution results and published experimental results, and the standard deviation of the void fraction
profile, show consistent trends when plotted against the dimensionless computational cell size based on
the Sauter-mean particle diameter. Grid-refinement studies are performed across all grid solutions, and the
Grid Convergence Index (GCI) is analyzed as a predictor for the grid solution error. Correlations between
simulation error and GCI are not strong, likely because of incongruence of the solution trends with typi-
cal asymptotic convergence. Alternatively, a correlation between change in solution value on successively
refined grids and finer-grid solution error is shown to be adequate for the current results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Particle processing operations are prevalent in industries such
as food processing, coal processing, plastics manufacturing, min-
eral processing and pharmaceuticals. Many varieties of equip-
ment, including fixed-beds, hoppers, conveyors, fluidized beds, and
spouted beds, are used to move and process particles into their final
desired form. Each step of the process has to be well understood in
order to most efficiently produce a consistent, high-quality product.

Experimental investigation of particle processing operations are
often hampered by the complicated, multi-scale phenomena present
in granular flows [1,2], and the opaque nature of granular mix-
tures [3]. Methods of non-invasive measurement of the flows are
currently in limited use [2–4], and require much development and
validation before they can be prevalently used.

Computational simulation of granular flows has shown great
success, with many different approaches continuing to be devel-
oped [5]. One of the most common approaches is the coupled Com-
putational Fluid Dynamics (CFD) - Discrete Element Method (DEM).
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The CFD-DEM procedure calculates particle trajectories individually,
while the fluid properties are computed on a standard CFD compu-
tational grid. The coupling involves calculation of the mass displace-
ment and momentum transfer between phases, and is computed on
the same computational grid as the CFD calculation [6].

There are many published studies investigating the cause of dif-
ferences between CFD-DEM results and experimental data [7,8]. The
modeling choices investigated as possible causes of this difference
include drag law [9–12], boundary conditions [13], 2D modeling of
3D systems [14,15], particle properties [9,10,16-19], porosity calcu-
lation method [20,21], and coupling model [14,22]. However, all of
these studies have either ignored the effect of the computational cell
size in their grid, or only compared solutions using several dissimi-
lar computational cell sizes. In 2007, Beetstra et al. [13] reported that
computational cell size had a larger impact on their results than the
choice of drag law, indicating that the effect of computational cell
size cannot be neglected.

An important complication exists in computational cell size
choices for CFD-DEM simulations. While pure CFD studies can sim-
ply choose a cell size that is sufficiently small, cell size choice for
CFD-DEM simulations is bounded by two critical cell sizes [23]. The
simulation solution diverges from the exact solution of mathemati-
cal model when the cell size is larger than an upper-critical cell size,
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and this solution-divergence behavior is also present when the cell
size is smaller than a lower-critical cell size. If the chosen computa-
tional cell size is outside of the area bounded by the two critical cell
sizes, the solution is likely to have a large error.

The present study is part of our continuing work to determine
the optimal cell size for CFD-DEM models. Ultimately, we want
to know if the average cell size can be non-dimensionalized by
a reference particle diameter such that the optimal dimensionless
cell size remains constant. Knowledge of such a constant optimal
dimensionless cell size would save substantial time and computa-
tional resources that are currently required to determine the model-
specific optimal cell size. An optimal dimensionless cell size could
also be used to analyze published CFD-DEM studies for discrepancies
caused by use of non-optimal cell sizes.

In the present study, we examine the simulation results for
fluid flows through fixed-beds of three different particle mixtures.
We model the experimental setup of Formisani et al. [24] for flow
through a fixed-bed containing different weight fractions of fine
particles. The empirical expressions we have for drag laws com-
pare well with the experimental data, ensuring small mathematical
errors originating from the drag law. The experimental description
provided by Formisani et al. [24] includes well defined flow condi-
tions, boundaries, and particle mixture properties. Simulation results
for this setup are calculated on computational grids of varying aver-
age cell size. The total drag force, calculated from the solution on
each grid, is compared to the experimental data to determine the
error. This error is plotted against the different definitions of dimen-
sionless computational cell size, to investigate the possible presence
of a consistently optimal dimensionless cell size, or cell size range.
Finally, we analyze simulated trends of void fraction with dimension-
less cell size, to explain divergence of the simulation results from the
experimental values.

We perform grid-refinement studies for the results from simu-
lations across the range of computational cell size. Grid-refinement
studies have been consistently used for CFD simulations to calcu-
late numerical error due to finite cell size. We previously applied
grid-refinement studies to simulations of flow through a mono-sized,
fixed-particle bed with moderate success [23], and are interested
in how this process will extend to simulations of flow through
binary-sized fixed-particle beds.

2. Mathematical model

The CFD-DEM mathematical model consists of the fluid flow con-
servation equations, the discrete-particle equations of motion, and
coupling expressions to describe how the two phases interact. Here
we give a brief overview, as a detailed description has been included
in the paper by Volk et al. [23].

The conservation of mass and momentum equations of incom-
pressible flows are modified, to account for the solids fraction in each
computational cell and the fluid-solid interacting force [15], as

∂e

∂t
+ ∇ • (euf ) = 0, (1)

and

∂(euf )
∂t

+ ∇ • (euf uf ) = −e∇ p
qf

− Rpf + ∇ •t. (2)

The void fraction, e, and solids interaction term, Rpf, are calcu-
lated by a coupling routine (to be detailed later) and communicated
to OpenFOAM, the CFD solver, at each calculation step [6].

The particle equations of motion, calculated using the DEM solver
LIGGGHTS, consist of summing all forces acting on each individual

particle, in the form of linear and angular momentum equations,
written for particle i as:

mi
dvi

dt
=

∑
j∈Sp

i

Fc
ij + fgrav,i + fg,i, (3)

and

Ii
dwi

dt
=

∑
j∈Sp

i

(
Ri × Ft,ij

)
, (4)

where Sp
i stands for the local set of particles interacting with particle i.

For this application, the fluid-solid interaction term ( fg,i) is cal-
culated by a coupling routine (see below), gravity ( fgrav,i) is stan-
dard and constant, and the particle-particle interactions

(
Fc

ij, Ft,ij

)
are

described by the Hertz contact model [25].
The CFDEM coupling software is used as the coupling routine. The

void fraction is first calculated by the divided void fraction method,
in which a large number of marker points are evenly distributed
on each particle. The computational cell corresponding spatially
to each marker point is determined, and each cell is assigned the
appropriate fraction of solids volume, based on the marker points
it contains [26]. Average particle velocities in each computational
cell are gathered from the DEM solver, along with the fluid velocity
from the CFD solver. The resultant quantities are used to calculate
the fluid-particle interaction force using the Gidaspow drag law. The
Gidaspow drag law [27] is a combination of the Ergun Equation [28]
when void fraction in the computational cell, e, is less than 0.8, and
the Wen & Yu Equation [29] for larger void fraction values:

fg,i =
Vib

(1 − e)
[uf − vi], where (5)
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| uf − vi | for(e < 0.8)

3
4 Cd

(1−e)qf
dp

| uf − vi | e−2.65 for(e ≥ 0.8)
. (6)

The Gidaspow Drag Law is appropriate to describe fluid-particle
interactions in the fluid flow through fixed-particle beds. We find
that the calculated values of Gidaspow drag are very close to the
experimental data of Formisani et al. [24], with an average 2%
difference, and maximum 7% difference. We establish a threshold
error for our simulation results based on this known difference
between the mathematical model and experimental data. Simula-
tion results with less than 5% error from the experimental data are
deemed acceptable, because of the unavoidable errors due to the use
of drag law equations. Our goal is now to find an optimal cell size to
minimize any additional error caused by cell size.

2.1. Grid-refinement study

The solution value trends with cell size are analyzed using the
standard grid-refinement study procedure. The total drag force on
the particle bed, at each velocity value of interest, is used as the
representative solution value, because the drag force controls sys-
tem behavior. The rate of solution-convergence and the predicted
numerical error in the solution on the finest-grid, known as the Grid
Convergence Index (GCI), are calculated based on the relationship
between changes in the grid-refinement level and the represen-
tative solution value. All possible combinations of grid-refinement
levels that feature similar changes in refinement, as well as simi-
lar changes in representative solution value, are considered. The full
grid-refinement study procedure is described in Celik et al. [30], and
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