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Accurate momentum coupling model is vital to simulation of dispersed multiphase flows. The overall
force exerted on a particle is divided into four physically meaningful contributions, i.e., quasi-steady,
stress-gradient, added-mass, and viscous-unsteady (history) forces. Time scale analysis on the turbulent
multiphase flow and the viscous-unsteady kernel shows that the integral representation of the viscous-
unsteady force is required except for a narrow range of particle size around the Kolmogorov length scale
when particle-to-fluid density ratio is large. Conventionally, the particle-to-fluid density ratio is used to
evaluate the relative importance of the unsteady forces (stress-gradient, added-mass, and history forces)
in the momentum coupling. However, it is shown from our analysis that when particle-to-fluid density
ratio is large, the importance of the unsteady forces depends on the particle-to-fluid length scale ratio
and not on the density ratio. Provided the particle size is comparable to the smallest fluid length scale
(i.e., Kolmogorov length scale for turbulence or shock thickness for shock-particle interaction) or larger,
unsteady forces are important in evaluating the particle motion. Furthermore, the particle mass loading is
often used to estimate the importance of the back effect of particles on the fluid. An improved estimate of
backward coupling for each force contribution is established through a scaling argument. The back effects
of stress-gradient and added-mass forces depend on particle volume fraction. For large particle-to-fluid
density ratio, the importance of the quasi-steady force in backward coupling depends on the particle
mass fraction; while that of the viscous-unsteady force is related to both particle mass and volume
fractions.
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1. Introduction

Modeling and simulation have become important approaches to
investigate multiphase flows in engineering and environmental
applications. The multiphase flows of interest here are the so-
called dispersed multiphase flows, which are characterized by a
dispersed phase that is distributed in a carrier phase in the form
of particles, droplets, and bubbles (see Balachandar and Eaton,
2010). Examples include particle suspension in gas or liquid flows,
droplet dispersion in gas flows, and bubbly flows. As can be seen in
these examples, the dispersed phase can be solid, liquid, or gas;
while the carrier phase can be liquid or gas. In some extreme cases,
such as heterogeneous explosive detonation, the carrier phase can
be solid as well (see Ling et al., 2013). For simplicity, here after we
refer to the dispersed and carrier phases as “particle” and “fluid”,
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but it should be noted that the terms “particle” and “fluid” are used
in a broad sense.

In typical applications, a very large number of particles are in-
volved and the scales of primary interest are much larger than
the size of an individual particle. Therefore, it is impractical to re-
solve the flow details at the particle scale. Instead, the point-parti-
cle approach (PPA) is commonly used, where particles are modeled
as point masses. Since the flows around the particles are not re-
solved, the momentum and energy coupling between fluid and
particles need to be given by proper models. In the incompressible
regime, Maxey and Riley (1983) and Gatignol (1983) have derived
rigorous expressions for the force on a particle undergoing arbi-
trary time-dependent motion in an unsteady inhomogeneous
ambient flow. The overall interphase coupling force can be sepa-
rated into different physically meaningful contributions: the qua-
si-steady force Fy, the stress-gradient force Fg,, the added-mass
force F,,, and the viscous-unsteady force F,, (often called the Bas-
set history force). The latter three contributions together are
loosely referred as the “unsteady forces”, since they are non-zero
only when the acceleration of the fluid or the particle is non-zero.
The Maxey-Riley-Gatignol (MRG) equation of motion has also been
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extended to compressible flows recently by Parmar et al. (2011,
2012). The above theoretical formulations are asymptotically valid
in the limit of small Reynolds and Mach numbers, but they serve as
theoretical basis for empirical extension to finite Reynolds and
Mach numbers.

At the level of an isolated particle in an incompressible flow, the
importance of the unsteady forces compared to the quasi-steady
force has been investigated by Bagchi and Balachandar (2002).
Their scaling analysis showed that the ratios |Fgm/Fgs| and |Fy,/Fgs|

scale as 1/(pp/pr+Cm) and 1/,/(p,/ps +Cu), respectively, if

unsteadiness is due to particle acceleration. Here p, and py are
the densities of the particle and the fluid, and Cy, is the added-mass
coefficient. This scaling is in complete agreement with conven-
tional expectation that in case of a particle much heavier than
the fluid (i.e., pp/ps> 1) unsteady forces are small compared to
the quasi-steady force and can be ignored. This is the reason why
added-mass and other unsteady forces are included in the simula-
tions of bubbly flows (see Pougatch et al., 2008) and liquid-solid
flows (see Snider et al., 1998; Patankar and Joseph, 2001) but often
ignored in the context of gas-particle flows. However, this conclu-
sion is not valid in case of unsteady effects arising from fluid accel-
eration. While the magnitude of particle acceleration is controlled
by the particle mass, there is no such limitation to the magnitude
of the ambient fluid acceleration seen by the particle. As a result, in
case of fluid acceleration, Bagchi and Balachandar (2002) showed
|Fsg/Fgs| and |[Fom/Fys| to scale as Rep(dp/L) and |F,,[Fg| to scale as
/Re,(d,/L), where Re,, is particle Reynolds number based on par-
ticle diameter (d,) and relative velocity, and L is length scale of
the ambient flow. Clearly, these ratios can be large even in case
of heavier-than-fluid particles and thus when fluid acceleration is
strong it may be necessary to include the unsteady forces even in
case of gas-solid flows.

This situation is particularly relevant in compressible flows,
where shocks and other discontinuities, as they pass over a parti-
cle, contribute to rapid variation in the ambient flow seen by the
particle, see Parmar et al. (2009). The resulting unsteady force con-
tributions arising from shock-particle interaction was systemati-
cally investigated by Ling et al. (2011ab). Their primary
conclusion was that as the shock moves over a particle the unstea-
dy forces due to ambient fluid acceleration are an order of magni-
tude or more larger than the quasi-steady force. Furthermore, as
can be expected from the scaling analysis of Bagchi and Balachan-
dar (2002), the magnitude of the enhanced unsteady forces is inde-
pendent of the particle-to-fluid density ratio (i.e., even in case of
gas-solid flows unsteady forces are large when a shock passes over
the particle). However, the duration of this strong unsteady contri-
bution is limited to only a brief period as the shock passes over the
particle. Therefore, the integrated effect of the unsteady force con-
tributions (Fsg, Farm and F,,) on the long-term post-shock motion of
the particle may not necessarily be significant. In terms of contri-
bution to the long-term post-shock particle velocity, the role of un-
steady force contributions was observed to be important only in
case of pp[ps~ O(1).

The above investigations have generally been in the context of
an isolated particle. As a result, they are applicable for dilute mul-
tiphase flows, where the influence of particles on the macroscale
fluid motion is negligibly small. Under such dilute condition the
fluid-particle interaction can be considered one-way coupled. In
other words, the particle motion is dictated by the fluid flow, but
the particles do not influence the fluid flow. However, in many
applications, where the mass loading of particles is finite, the influ-
ence of particles on the macroscale fluid flow is significant. Then
the fluid and particles are two-way coupled, see Crowe et al.
(1998); Balachandar and Eaton (2010); Subramaniam (2013). In
the literature, the effect of fluid on particles is usually referred as

forward coupling; while the reverse effect of particles on fluid is
referred backward coupling, see Garg et al. (2007) and Ling et al.
(2010).

Here we are interested in multiphase flow problems where both
two-way coupling and unsteady mechanisms are of importance. In
this flow regime we are interested in addressing the following
three fundamental questions on interphase coupling:

e Q1: Is it possible to simplify the history integral in computing
viscous-unsteady force? If so, under what conditions can this
simplification be made?

e Q2: Under what conditions are unsteady forces important in
evaluating the particle motion when compared to quasi-
steady force?

e Q3: Under what conditions does the back effect of both quasi-
steady and unsteady forces need to be taken into account in
the fluid momentum equation, (i.e., under what conditions
the fluid and particles are considered as two-way coupled)?

For Q1, the viscous-unsteady force is generally computed as the
Basset-like convolution integral of the past history of the relative
acceleration between the particle and the surrounding fluid
weighted by the history kernel. The evaluation of this convolution
integral is computationally very costly. However, if the rate of
change of the relative acceleration is slower than the decay of
the kernel then the convolution integral can be simplified and pre-
computed. In this paper, by investigating the time scale of the vis-
cous-unsteady kernel in relation to the turbulence time scale, we
will establish the condition under which the convolution integral
can be simplified.

For Q2, the particle-to-fluid density ratio, pp/py, is convention-
ally used in evaluating the importance of the unsteady forces.
Based on this argument, unsteady forces are often neglected in
gas-particle flows, where p,/pr>> 1. However, the scaling analysis
of the unsteady forces by Bagchi and Balachandar (2002) has
shown that the conventional criterion is proper in case of unsteady
forces arising from particle acceleration, but must be modified if
the added-mass and viscous-unsteady forces are due to fluid accel-
eration. Here we will extend this analysis with a more rigorous
evaluation of the particle response to a range of turbulent scales.
In particular, we will follow the approach of Balachandar (2009)
to obtain the scales of relative velocity and relative acceleration
seen by the particle in the three regimes characterized by 7, < 7,
Ty < Tp <1y, and 1, < Tp, Where 1, is the particle response time, 1,
and t; are the Kolmogorov and integral time scales of the ambient
flow (precise definitions of the time scales will be given in Sec-
tion 3). From these characteristic scales, quantitative estimates of
the relative importance of the unsteady forces in a turbulent flow
will be obtained.

For Q3, the particle mass fraction ratio, defined as the mass ratio
between the particles and fluid in a unit volume of the multiphase
flow, is usually taken as the momentum coupling parameter, see
Crowe et al. (1998). The general rule of thumb is that when the
momentum coupling parameter is O(1) or more, the fluid and par-
ticles are two-way coupled. This conventional momentum cou-
pling parameter considers only the quasi-steady component of
the backward coupling force, and thus may not apply when unstea-
dy forces dominate interphase coupling. Here we will present a
scaling argument to establish conditions under which quasi-steady
and unsteady forces must be included in the backward momentum
coupling. It should be reminded that when the volume fraction of
particles is finite, the evolution of the which can also significantly
influence the fluid flow through the fluid continuity equation (Eq.
(1)). Nevertheless, the present paper focuses only on dilute flows
where the influence of the particles on the fluid flow is only
through momentum transfer.
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