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This paper presents an accurate model for the normal force–displacement relationship between elastic–plastic
spheres in contact for use in discrete element method (DEM) simulations. The model has been developed by
analysing thenormal force–displacement relationship between an elastic–perfectly plastic sphere and a rigid sur-
face using the finite element method (FEM). Empirical relationships are found that relate the parameters of the
new model to material properties. This allows the model to be used in the DEM for direct simulation of well
characterised elastic–plastic materials without fitting parameters to experimental results. This gives the model
an advantage over models in the literature for which fitting to experimental results is required. The implemen-
tation of the model into an existing DEM code is discussed and validated against the results from FEM simula-
tions. The new model shows a good match to the FEM results and the DEM implementation correctly
distinguishes between the loading, unloading and re-loading phases of contact between two spheres.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Granular materials are of vital importance in many industrial and
natural processes. For example they are widespread in the pharmaceu-
tical industry [1] and natural processes such as avalanches and tidal
mud flows [2]. The difficulty and expense of large-scale experiments
involving granular flows and the lack of any over-arching physical
laws to describe them means that they are ideally suited to computa-
tional study. To that end, computational modelling of granular systems
has increased significantly in recent years [3], particularly using the
discrete element method (DEM). The main advantage of DEM is that it
gives information on the microscopic scale of individual particles,
which can be used to explore the relationship between macro- and
microscopic properties in granular materials.

Soft-sphere DEMwas originally developed by Cundall and Strack [4].
Particle deformation is modelled as an overlap of the particles for every
collision of a pair of particles. Simplemodels are used to relate this over-
lap, or displacement, to the forces acting on each particle. Newton's sec-
ond law is then used to calculate accelerations that are integrated over
small time-steps to determine the new velocities and positions of the
particles. The nature of a model and its parameterisation directly affect
the accuracy of a DEM simulation.

Models are usually designed for smooth particles of regular rounded
shape and they provide force-displacement laws that account for both
normal and tangential interactions. For elastic contacts, the Hertz [5] and
Mindlin–Deresiewicz [6] models are themost commonmeans to account
for the normal and tangential components when the two contributions
can be uncoupled. Their range of application and validity has been verified
by detailed finite element (FEM) simulations and experiments conducted
using elastic spheres [7,8]. However, most materials exhibit some form of
energy dissipation, either viscoelastic or plastic, and these models are not
able to describe these behaviours. A number of both normal and tangen-
tial models have been developed for viscoelastic and elastic–plastic mate-
rials and these are summarised in a number of review papers [9–13].

Zheng et al. [14] have recently developed a comprehensive visco-
elastic model with both normal and tangential components that com-
pares well to the results obtained using detailed FEM simulations. The
model is an improvement on previous models not only because it is
accurate but also because it has parameters that can be derived directly
from material properties.

Elastic–plastic models are complex because they have to take into
account the transition between elastic and plastic behaviour and be-
tween loading, unloading and reloading stages. Most of the models
that have been developed use a piecewise approach to the different
stages—that is different force–displacement relationships are used for
elastic, elastic–plastic and unloading behaviours.

It has been shown in FEM simulations and experiments [15,16] that
the relationship between the force and displacement is non-linear for
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elastic materials and for elastic–plastic materials immediately after the
plastic yield displacement. However, a number of models use linear re-
lationships between displacement and force because they are less com-
putationally expensive to calculate thus allowing the simulation of
larger systems using DEM. These include the recent models of Thakur
et al. [17] and Pasha et al. [18], which also include adhesive forces, and
the older Walton–Braun model [19], recently extended for cyclic load-
ing [20]. Broadly speaking these models and the models of Luding [21]
andWalton and Johnson [22] use linear springs, characterised by an ap-
propriate stiffness, for each part of the force–displacement relationship.
For the Thakur model stiffness values needed for a specific material are
found by comparing the results of DEM simulations to experiment and
calibrating the stiffnesses appropriately [23]. This requires experiments
to be carried out for every material to be simulated. Similar procedures
are required to find the stiffness values for the other models or alterna-
tively the models can be fitted directly to experimental results [9,20].

The Thornton [24] model has three constituent parts: non-linear
elastic loading and unloading and linear plastic loading
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The first part is the Hertz elastic model, where k ¼ 4=3E�
ffiffiffiffiffi
R�p

. This
gives the force up to a yield displacement
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The second part is plastic, where py is the contact yield stress. Using
the von Mises criterion, py can be calculated from the yield stress, σy,
using py = Ay[ν]σy where Ay[ν] depends exclusively on the material's
Poisson's ratio, ν [25]. Alternatively the plastic loading is often fitted to
experimental or computational results using py as an adjustable param-
eter [9,26] rather than as a theoretically determined parameter. The
third part is elastic unloading where kun ¼ 4=3E�

ffiffiffiffiffiffiffi
R�
un

p
is the elastic

unloading constant. It is the Hertzian constant with the effective radius,
R*, replaced by the effective radius of unloading, Run⁎ to account for the
flattening of the contact due to the permanent plastic deformation. It
is assumed that the ratio of the effective radii is equal to the ratio of
the maximum elastic force and the actual maximum force. Thus, Run⁎ , is
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The non-adhesive version of the Tomas model [27] is similar to the
Thorntonmodel. It uses theHertz elasticmodel up to the same yield dis-
placement. Above this displacement the loading relationship contains a
parameter, the contact area coefficient, that represents the ratio of the
plastically deformed area to the total deformed area. This parameter is
0 for perfectly elastic deformation and 1 for plastic deformation (at
which point the loading relation is given by the same linear expression
as in the Thorntonmodel). Increasing this parameterwith displacement
allows the Tomasmodel to capture the non-linear nature of the force re-
sponse in the intermediate elastic–plastic regime between pure elastic
and pure plastic loading. In recent work [16,28] a fitting parameter is
added to this loading relation in order to fit it to experimental results.

The original Tomas model is used with a Hertzian model for
unloading [27], similar to the Thornton model but with an unchanged
radius of curvature, appropriate for ‘healing’ contacts [29]. It is also
used with an adapted radius of curvature [28] based on the work of
Stronge [30] with an additional adjustable parameter to allow fitting
to experimental results.

The Vu-Quoc and Zhangmodel [15] and the Li–Wu–Thornton (LWT)
model [31]were developed using FEM simulations. They are both signif-
icantly more complex than the models previously considered and both
models have to be solved numerically to obtain the force for a given dis-
placement. This means that at every time-step numerous iterations
have to be carried out for every collision in order to calculate the forces,
making them computationally expensive.

There are also a number of force–displacement models in the tribol-
ogy literature [32–35]. These are designed for much larger relative
displacements than typically seen in DEM in order to model high force
impacts, often of a single spherical object onto a near-rigid flat. These
models include the analytical Brake model [32] and the empirical
Jackson and Green model [33].

The Brake model has four parts: Hertzian elastic loading, elastic–
plastic loading, purely plastic loading and elastic unloading. The plastic
loading is linear and given by the product of the contact pressure and
area. The elastic–plastic loading, between the yield displacement δy
and the displacement at the onset of fully plastic loading, δp, is given
by cubic Hermite polynomials. These depend on a series of derived pa-
rameters including δy and δp aswell as the forces at these displacements
and their derivatives. δp is related to the material hardness, H. The form
of the unloading relation is the same as that in the Thornton model
above with different expressions for Run⁎ and δmin, which depend on
the type of loading at the maximum displacement.

The Jackson and Green (JG) model has two parts: Hertzian elastic
loading and plastic loading. The plastic loading relationwas determined
empirically from FEM simulations and the parameters are directly relat-
ed to the material properties. The original model does not contain
unloading but it can be used [32,36] in conjunction with the unloading
model of Etison et al. [37] or an empiricalmodelfitted to the FEM results
of Jackson et al. [38]. Unlike the Brake, Thornton and Vu-Quoc and
Zhangmodels that use the Hertz elastic model up to the yield displace-
ment given by Eq. (2), the JG model uses the Hertz elastic model up to
1.9 times the yield displacement (called the ‘critical interference’ by
Jackson and Green).

Many of the models discussed suffer from limitations including the
need for calibrating or fitting parameters to time consuming experi-
ments for each material to be simulated, computational expense or
being unable to replicate the non-linear nature of the force response.
In this paper a new normal force–displacement model for spherical
elastic–perfectly plastic particles that addresses some of these limita-
tions is presented. It has been developed using detailed FEM simula-
tions. Relationships between forces and displacements are derived for
the loading, unloading and re-loading stages of the contact interactions
and can be implemented into DEM without the need for complex nu-
mericalmethods. Themodel has parameters that can bederived directly
from material properties that have been independently characterised
and is designed for small relative displacements common in DEM. It is
compared with the Thornton model and the Brake and JG models.

2. Finite element simulations

2.1. Method

3D FEM simulations of the normal impact of a deformable elastic–
perfectly plastic sphere on a rigid surface are carried out in order to inves-
tigate in detail the behaviour of the sphere when in contact with the sur-
face. By symmetry the collision of a spherewith a rigidflat is the same as a
collision of two identical spheres with the same material properties. The
simulations are carried out using Abaqus software package [39]. Only a
small portion of the sphere, which can be seen in Fig. 2, is simulated be-
cause the contact area is very localised. The contact radius obtained dur-
ing the FEM simulations is much smaller than all other dimensions and,
therefore, the remote boundaries do not affect the solution. This is the
method employed by Zheng et al. [14] and they show that using a portion
instead of the whole sphere has very little impact on the results of the
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